Suppr超能文献

使用基于证据和基于案例的指南制定方法,开发一种元算法,用于指导患有多种疾病的患者的初级保健诊疗。

Development of a meta-algorithm for guiding primary care encounters for patients with multimorbidity using evidence-based and case-based guideline development methodology.

作者信息

Muche-Borowski Cathleen, Lühmann Dagmar, Schäfer Ingmar, Mundt Rebekka, Wagner Hans-Otto, Scherer Martin

机构信息

Institute for Primary Care and Family Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.

出版信息

BMJ Open. 2017 Jun 22;7(6):e015478. doi: 10.1136/bmjopen-2016-015478.

Abstract

OBJECTIVE

The study aimed to develop a comprehensive algorithm (meta-algorithm) for primary care encounters of patients with multimorbidity. We used a novel, case-based and evidence-based procedure to overcome methodological difficulties in guideline development for patients with complex care needs.

STUDY DESIGN

Systematic guideline development methodology including systematic evidence retrieval (guideline synopses), expert opinions and informal and formal consensus procedures.

SETTING

Primary care.

INTERVENTION

The meta-algorithm was developed in six steps:1. Designing 10 case vignettes of patients with multimorbidity (common, epidemiologically confirmed disease patterns and/or particularly challenging health care needs) in a multidisciplinary workshop.2. Based on the main diagnoses, a systematic guideline synopsis of evidence-based and consensus-based clinical practice guidelines was prepared. The recommendations were prioritised according to the clinical and psychosocial characteristics of the case vignettes.3. Case vignettes along with the respective guideline recommendations were validated and specifically commented on by an external panel of practicing general practitioners (GPs).4. Guideline recommendations and experts' opinions were summarised as case specific management recommendations (N-of-one guidelines).5. Healthcare preferences of patients with multimorbidity were elicited from a systematic literature review and supplemented with information from qualitative interviews.6. All N-of-one guidelines were analysed using pattern recognition to identify common decision nodes and care elements. These elements were put together to form a generic meta-algorithm.

RESULTS

The resulting meta-algorithm reflects the logic of a GP's encounter of a patient with multimorbidity regarding decision-making situations, communication needs and priorities. It can be filled with the complex problems of individual patients and hereby offer guidance to the practitioner. Contrary to simple, symptom-oriented algorithms, the meta-algorithm illustrates a superordinate process that permanently keeps the entire patient in view.

CONCLUSION

The meta-algorithm represents the back bone of the multimorbidity guideline of the German College of General Practitioners and Family Physicians. This article presents solely the development phase; the meta-algorithm needs to be piloted before it can be implemented.

摘要

目的

本研究旨在为患有多种疾病的患者的初级保健会诊开发一种综合算法(元算法)。我们采用了一种新颖的、基于案例和证据的程序,以克服为有复杂护理需求的患者制定指南时的方法学困难。

研究设计

系统的指南制定方法,包括系统的证据检索(指南概要)、专家意见以及非正式和正式的共识程序。

设置

初级保健。

干预措施

元算法分六个步骤开发:1. 在多学科研讨会上设计10个患有多种疾病患者的病例 vignette(常见的、经流行病学证实的疾病模式和/或特别具有挑战性的医疗保健需求)。2. 根据主要诊断,编写基于证据和共识的临床实践指南的系统指南概要。根据病例 vignette 的临床和社会心理特征对建议进行优先排序。3. 病例 vignette 及其各自的指南建议由外部执业全科医生(GP)小组进行验证并给出具体评论。4. 将指南建议和专家意见总结为针对具体病例的管理建议(单病例指南)。5. 通过系统的文献综述得出患有多种疾病患者的医疗保健偏好,并补充定性访谈的信息。6. 使用模式识别分析所有单病例指南,以识别常见的决策节点和护理要素。这些要素被整合在一起形成一个通用的元算法。

结果

所得的元算法反映了全科医生在面对患有多种疾病的患者时,在决策情况、沟通需求和优先事项方面的逻辑。它可以填入个体患者的复杂问题,从而为从业者提供指导。与简单的、以症状为导向的算法不同,元算法说明了一个始终将整个患者考虑在内的上级过程。

结论

元算法是德国全科医生和家庭医生学院多种疾病指南的核心。本文仅介绍了开发阶段;元算法在实施之前需要进行试点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3c8/5734311/83969f362a35/bmjopen-2016-015478f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验