Kumar Keshav
Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
J Fluoresc. 2017 Nov;27(6):1957-1968. doi: 10.1007/s10895-017-2132-0. Epub 2017 Jun 23.
Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.
多元曲线分辨交替最小二乘法(MCR - ALS)分析是最常用的曲线分辨技术。MCR - ALS模型使用交替最小二乘法(ALS)算法进行拟合,该算法需要对每个因子的贡献谱或光谱谱进行初始化。贡献谱可以使用演化因子分析进行初始化;然而,原则上这种方法要求数据必须属于顺序过程。光谱谱的初始化通常使用诸如SIMPLISMA算法之类的纯变量方法,这种方法要求每个因子在数据集中必须有纯变量。尽管有这些限制,但现有方法在启动MCR - ALS分析方面已经相当成功。然而,本工作提出了一种通过在数据集每个光谱变量的最大值和最小值所跨越的范围内生成随机变量来初始化光谱变量的替代方法。所提出的方法不要求多组分系统的每个组分都必须有纯变量,也不要求浓度方向必须遵循顺序过程。使用为某些具有显著光谱重叠的荧光团获取的激发 - 发射矩阵荧光数据集成功验证了所提出的方法。发现这些荧光团的计算贡献谱和光谱谱与实验结果有很好的相关性。总之,本工作提出了一种启动MCR - ALS分析的替代方法。