Kumar Keshav
Institute for Wine analysis and Beverage Research, Hochschule Geisenheim University, 65366, Geisenheim, Germany.
J Fluoresc. 2019 May;29(3):683-691. doi: 10.1007/s10895-019-02379-z. Epub 2019 Apr 29.
Parallel factor (PARAFAC) analysis is the most commonly used mathematical technique to analyse the excitation-emission matrix fluorescence (EEMF) data sets of mutifluorophoric mixtures. PARAFAC essentially performs the mathematical chromatography on the EEMF data sets and helps in extracting pure excitation, pure emission and contribution profiles of each of the fluorophores without requiring any pre-separation step. The application of PARAFAC requires the initialisation of the spectral variables that is usually achieved by performing the singular value decomposition (SVD) analysis on EEMF data sets. One of the problem with SVD based initialisation is that it orthogonalises the data sets and makes the PARAFAC modelling of the EEMF data sets computationally challenging task that needs to be taken care. To address this issue, the present introduces an alternate approach for initialising the spectral variables for performing the PARAFAC analysis. The proposed approach essentially involve initialisation of the spectral variables with random numbers in a constraint manner. The proposed approach is found to provide the desired computational economy, robustness and analytical effectiveness to the PARAFAC analysis of EEMF data sets.
平行因子(PARAFAC)分析是分析多荧光团混合物的激发-发射矩阵荧光(EEMF)数据集时最常用的数学技术。PARAFAC本质上是对EEMF数据集进行数学色谱分析,并有助于在无需任何预分离步骤的情况下提取每个荧光团的纯激发、纯发射和贡献谱。PARAFAC的应用需要对光谱变量进行初始化,这通常通过对EEMF数据集进行奇异值分解(SVD)分析来实现。基于SVD初始化的一个问题是它使数据集正交化,从而使EEMF数据集的PARAFAC建模成为一项需要谨慎处理的计算挑战性任务。为了解决这个问题,本文介绍了一种用于初始化光谱变量以进行PARAFAC分析的替代方法。所提出的方法本质上是以约束方式用随机数对光谱变量进行初始化。结果发现,所提出的方法为EEMF数据集的PARAFAC分析提供了所需的计算经济性、稳健性和分析有效性。