Kalita Monoj Mon, Fischer Wolfgang B
Institute of Biophotonics and Biophotonics & Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Nong St., Sec. 2, Taipei, 112, Taiwan.
J Mol Model. 2017 Jul;23(7):212. doi: 10.1007/s00894-017-3389-6. Epub 2017 Jun 23.
The 97 amino acid bitopic membrane protein M2 of influenza A forms a tetrameric bundle in which two of the monomers are covalently linked via a cysteine bridge. In its tetrameric assembly the protein conducts protons across the viral envelope and within intracellular compartments during the infectivity cycle of the virus. A key residue in the translocation of the protons is His-37 which forms a planar tetrad in the configuration of the bundle accepting and translocating the incoming protons from the N terminal side, exterior of the virus, to the C terminal side, inside the virus. With experimentally available data from NMR spectroscopy of the transmembrane domains of the tetrameric M2 bundle classical MD simulations are conducted with the protein bundle in different protonation stages in respect to His-37. A full correlation analysis (FCA) of the data sets with the His-37 tetrad either in a fully four times unprotonated or protonated state, assumed to mimic high and low pH in vivo, respectively, in both cases reveal asymmetric backbone dynamics. His-37 side chain rotation dynamics is increased at full protonation of the tetrad compared to the dynamics in the fully unprotonated state. The data suggest that proton translocation can be achieved by decoupled side chain or backbone dynamics. Graphical abstract Visualization of the tetrameric bundle of the transmembrane domains of M2 of influenza A after 200 ns of MD simulations (upper left). The four histidine residues 37 are either not protonated as in M2 or fully protonated is in M2. The asymmetric dynamics of the backbones are shown after a full correlation analysis (FCA) in blue (lower left). The rotational dynamics of the χ2 dihedral angles of the histidines in M2 (upper right) are less than those in M2 (lower right).
甲型流感病毒的97个氨基酸的双拓扑膜蛋白M2形成一个四聚体束,其中两个单体通过一个半胱氨酸桥共价连接。在其四聚体组装中,该蛋白在病毒感染周期内介导质子穿过病毒包膜并在细胞内区室中运输。质子转运的一个关键残基是His-37,它在束状结构中形成一个平面四联体,从病毒外部的N端侧接受并转运进入的质子到病毒内部的C端侧。利用来自四聚体M2束跨膜结构域的核磁共振光谱的实验可用数据,对处于不同His-37质子化阶段的蛋白束进行经典分子动力学模拟。对数据集进行全相关分析(FCA),假设His-37四联体分别处于完全四次未质子化或质子化状态,以模拟体内的高pH和低pH,在这两种情况下均揭示了不对称的主链动力学。与完全未质子化状态相比,在四联体完全质子化时His-37侧链的旋转动力学增加。数据表明质子转运可以通过解耦的侧链或主链动力学来实现。图形摘要:甲型流感病毒M2跨膜结构域四聚体束在200 ns分子动力学模拟后的可视化(左上)。四个组氨酸残基37要么如在M2中那样未质子化,要么如在M2中那样完全质子化。在全相关分析(FCA)后,主链的不对称动力学以蓝色显示(左下)。M2中组氨酸的χ2二面角的旋转动力学(右上)小于M2中的(右下)。