Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
Viruses. 2022 Mar 28;14(4):699. doi: 10.3390/v14040699.
Focusing on the transmembrane domains (TMDs) of viral fusion and channel-forming proteins (VCPs), experimentally available and newly generated peptides in an ideal conformation of the S and E proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and SARS-CoV, gp41 and Vpu, both of human immunodeficiency virus type 1 (HIV-1), haemagglutinin and M2 of influenza A, as well as gB of herpes simplex virus (HSV), are embedded in a fully hydrated lipid bilayer and used in multi-nanosecond molecular dynamics simulations. It is aimed to identify differences in the dynamics of the individual TMDs of the two types of viral membrane proteins. The assumption is made that the dynamics of the individual TMDs are decoupled from their extra-membrane domains, and that the mechanics of the TMDs are distinct from each other due to the different mechanism of function of the two types of proteins. The diffusivity coefficient (DC) of the translational and rotational diffusion is decreased in the oligomeric state of the TMDs compared to those values when calculated from simulations in their monomeric state. When comparing the calculations for two different lengths of the TMD, a longer full peptide and a shorter purely TMD stretch, (i) the difference of the calculated DCs begins to level out when the difference exceeds approximately 15 amino acids per peptide chain, and (ii) the channel protein rotational DC is the most affected diffusion parameter. The rotational dynamics of the individual amino acids within the middle section of the TMDs of the fusion peptides remain high upon oligomerization, but decrease for the channel peptides, with an increasing number of monomers forming the oligomeric state, suggesting an entropic penalty on oligomerization for the latter.
专注于病毒融合和通道形成蛋白(VCPs)的跨膜结构域(TMDs),实验上可及的以及新生成的肽段处于严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)和 SARS-CoV 的 S 和 E 蛋白、人类免疫缺陷病毒 1 型(HIV-1)的 gp41 和 Vpu、甲型流感的血凝素和 M2 以及单纯疱疹病毒(HSV)的 gB 的理想构象中,均嵌入在完全水合的脂质双层中,并用于多纳秒分子动力学模拟。其目的是识别两种类型的病毒膜蛋白的各个 TMD 的动力学差异。假设各个 TMD 的动力学与它们的跨膜外区域解耦,并且由于两种蛋白的功能机制不同,TMD 的力学性质彼此不同。与单体状态下模拟计算得到的结果相比,TMD 的寡聚状态下的平移和旋转扩散的扩散系数(DC)降低。当比较两种不同长度的 TMD 的计算结果时,(i)当 TMD 每肽链的差异超过约 15 个氨基酸时,计算出的 DC 差异开始趋于平稳,以及(ii)通道蛋白的旋转 DC 是受影响最大的扩散参数。在融合肽的 TMD 的中间部分的各个氨基酸的旋转动力学在寡聚化时仍然很高,但对于通道肽而言降低,随着形成寡聚态的单体数量增加,表明后者的寡聚化存在熵罚。