Aix Marseille University, CNRS, CINAM, Marseille, France.
Département de Génétique Médicale, Centre de référence thalassemie, La Timone, Assistance Publique des Hôpitaux de Marseille, France, Aix Marseille University, INSERM, GMGF, Marseille, France.
Small. 2017 Aug;13(32). doi: 10.1002/smll.201700967. Epub 2017 Jun 26.
Nanoparticles delivering drugs, disseminating cancer cells, and red blood cells (RBCs) during splenic filtration must deform and pass through the sub-micrometer and high aspect ratio interstices between the endothelial cells lining blood vessels. The dynamics of passage of particles/cells through these slit-like interstices remain poorly understood because the in vitro reproduction of slits with physiological dimensions in devices compatible with optical microscopy observations requires expensive technologies. Here, novel microfluidic PDMS devices containing high aspect ratio slits with sub-micrometer width are molded on silicon masters using a simple, inexpensive, and highly flexible method combining standard UV lithography and anisotropic wet etching. These devices enabled revealing novel modes of deformations of healthy and diseased RBCs squeezing through splenic-like slits (0.6-2 × 5-10 × 1.6-11 µm ) under physiological interstitial pressures. At the slit exit, the cytoskeleton of spherocytic RBCs seemed to be detached from the lipid membrane whereas RBCs from healthy donors and patients with sickle cell disease exhibited peculiar tips at their front. These tips disappeared much slower in patients' cells, allowing estimating a threefold increase in RBC cytoplasmic viscosity in sickle cell disease. Measurements of time and rate of RBC sequestration in the slits allowed quantifying the massive trapping of spherocytic RBCs.
纳米颗粒在脾脏过滤过程中输送药物、传播癌细胞和红细胞 (RBC) 时,必须变形并通过血管内皮细胞之间的亚微米和高纵横比间隙。由于在与光学显微镜观察兼容的设备中体外再现具有生理尺寸的狭缝需要昂贵的技术,因此这些颗粒/细胞通过这些狭缝状间隙的通过动力学仍然知之甚少。在这里,使用一种简单、廉价且高度灵活的方法,将包含具有亚微米宽度的高纵横比狭缝的新型微流控 PDMS 器件结合标准的 UV 光刻和各向异性湿法刻蚀,在硅模具上进行模制。这些设备使人们能够揭示健康和患病 RBC 通过脾脏样狭缝(0.6-2 × 5-10 × 1.6-11 µm)在生理间质压力下变形的新模式。在狭缝出口处,球形 RBC 的细胞骨架似乎与脂质膜分离,而来自健康供体和镰状细胞病患者的 RBC 在前部显示出奇特的尖端。这些尖端在患者细胞中消失得慢得多,这使得可以估计镰状细胞病中 RBC 细胞质粘度增加了三倍。在狭缝中测量 RBC 隔离的时间和速率允许定量球形 RBC 的大量捕获。