Suppr超能文献

蜘蛛丝蛋白保守 N 端结构域的二聚化控制重复核心结构域的自组装。

Dimerization of the Conserved N-Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain.

机构信息

Lehrstuhl Biomaterialien, ‡Forschungszentrum für Bio-Makromoleküle (BIOmac), §Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), ∥Bayreuther Materialzentrum (BayMat), ⊥Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), and #Bayrisches Polymerinstitut (BPI), Universität Bayreuth , 95440 Bayreuth, Germany.

出版信息

Biomacromolecules. 2017 Aug 14;18(8):2521-2528. doi: 10.1021/acs.biomac.7b00672. Epub 2017 Jul 6.

Abstract

Spider silk proteins comprise a repetitive core domain with polyalanine and glycine/proline-rich stretches flanked by highly conserved nonrepetitive N- and C-terminal domains. The termini are responsive to assembly triggers, sensing changes in the ionic (H, phosphate) and mechanical (shear stress) environment along the spinning duct. The N-terminal domain dimerizes in a pH-dependent manner induced by protonation of conserved acidic residues. To date, dimerization of N-terminal spider silk domains has been individually investigated in the absence of large core domains. In this work, the impact of an engineered 50 kDa (AQ) core domain was studied on N-terminal dimerization by circular dichroism, fluorescence and absorbance spectroscopy, multiangle light scattering, as well as scanning electron and transmission electron microscopy. Although the core domain showed no apparent influence on the dimerization behavior of the N-terminal domain, the N-terminal domain in contrast influenced the behavior of the core domain: the monomeric state enhanced (AQ)'s solubility, and dimer formation triggered self-assembly. The monomer-dimer equilibrium was influenced by using several previously established mutants, confirming these results. This work thereby provides molecular insights into how key residues of the N-terminal domain control the dimerization-mediated transformation of soluble spidroins into fibrillary assemblies.

摘要

蜘蛛丝蛋白由一个重复的核心结构域组成,带有富含丙氨酸和甘氨酸/脯氨酸的伸展区,两侧是高度保守的非重复的 N 端和 C 端结构域。两端对组装触发因素敏感,能够感知纺丝管中离子(H、磷酸盐)和机械(剪切应力)环境的变化。N 端结构域通过保守酸性残基的质子化以依赖 pH 的方式二聚化。迄今为止,已经在没有大的核心结构域的情况下单独研究了 N 端蜘蛛丝结构域的二聚化。在这项工作中,通过圆二色性、荧光和吸收光谱、多角度光散射以及扫描电子显微镜和透射电子显微镜研究了工程化的 50 kDa(AQ)核心结构域对 N 端二聚化的影响。尽管核心结构域对 N 端结构域的二聚化行为没有明显影响,但 N 端结构域却影响了核心结构域的行为:单体状态增强了(AQ)的溶解度,而二聚体形成触发了自组装。使用几种先前建立的突变体来影响单体-二聚体平衡,证实了这些结果。这项工作因此提供了分子见解,了解 N 端结构域的关键残基如何控制二聚化介导的可溶性丝蛋白转化为纤维状组装。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验