揭示一种重组类蜘蛛拖丝蛋白的动态自组装过程。
Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein.
作者信息
Wu Dongqing, Koscic Anamaria, Schneider Sonja, Dubini Romeo C A, Rodriguez Camargo Diana C, Schneider Sabine, Rovó Petra
机构信息
Department of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
出版信息
Biomacromolecules. 2024 Mar 11;25(3):1759-1774. doi: 10.1021/acs.biomac.3c01239. Epub 2024 Feb 11.
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in , purified, and cast into films from formic acid. We produced uniformly C-N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
尽管人们对重组生产具有与天然蜘蛛丝相似机械性能的合成蜘蛛丝纤维有着浓厚兴趣,但在成本效益、可调节性和可扩展性等方面仍存在不足。为应对这一长期挑战,我们利用金门组装技术构建了一种人工蜘蛛丝基因,用于在重组细菌中生产模仿拖牵丝的丝,该基因包含所有必需组件:N端结构域、一个33个残基长的受大壶腹蛛丝蛋白启发的片段重复16次,以及C端结构域(N16C)。这种设计的类丝蛋白在[具体表达宿主]中成功表达、纯化,并从甲酸中浇铸成膜。我们制备了均匀C-N标记的N16C膜,并采用固态魔角旋转核磁共振(NMR)进行表征。因此,我们能够证明我们的生物工程类丝蛋白自组装成一种膜,在水合时,刚性的β-纳米晶聚丙氨酸核心的溶剂暴露层会转变为α-螺旋结构,获得足够的流动性,以至于它完全溶解于水并转变为高度动态的无规卷曲。这种水合诱导行为在微秒时间尺度上诱导富含甘氨酸的无定形软段中的链动力学,有助于固体材料的弹性。我们的研究结果不仅揭示了膜超结构中存在结构和动态不同的片段,还突出了负责在模仿拖牵丝的蛋白质中观察到的卓越机械性能的自组织的复杂性。