Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA.
Research Center of the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
Neuropsychopharmacology. 2018 Jan;43(2):362-372. doi: 10.1038/npp.2017.133. Epub 2017 Jun 26.
The dynorphin/κ-opioid receptor (KOR) system has been previously implicated in the regulation of cognition, but the neural circuitry and molecular mechanisms underlying KOR-mediated cognitive disruption are unknown. Here, we used an operational test of cognition involving timing and behavioral inhibition and found that systemic KOR activation impairs performance of male and female C57BL/6 mice in the differential reinforcement of low response rate (DRL) task. Systemic KOR antagonism also blocked stress-induced disruptions of DRL performance. KOR activation increased 'bursts' of incorrect responses in the DRL task and increased marble burying, suggesting that the observed disruptions in DRL performance may be attributed to KOR-induced increases in compulsive behavior. Local inactivation of KOR by injection of the long-acting antagonist nor-BNI in the ventral tegmental area (VTA), but not the infralimbic prefrontal cortex (PFC) or dorsal raphe nucleus (DRN), prevented disruption of DRL performance caused by systemic KOR activation. Cre-dependent genetic excision of KOR from dopaminergic, but not serotonergic neurons, also blocked KOR-mediated disruption of DRL performance. At the molecular level, we found that these disruptive effects did not require arrestin-dependent signaling, because neither global deletion of G-protein receptor kinase 3 (GRK3) nor cell-specific deletion of GRK3/arrestin-dependent p38α MAPK from dopamine neurons blocked KOR-mediated DRL disruptions. We then showed that nalfurafine, a clinically available G-biased KOR agonist, could also produce DRL disruptions. Together, these studies demonstrate that KOR activation in VTA dopamine neurons disrupts behavioral inhibition in a GRK3/arrestin-independent manner and suggests that KOR antagonists could be beneficial for decreasing stress-induced compulsive behaviors.
阿片肽/κ 型受体(KOR)系统以前被认为参与调节认知,但 KOR 介导的认知障碍的神经回路和分子机制尚不清楚。在这里,我们使用了一种涉及计时和行为抑制的认知操作测试,发现全身 KOR 激活会损害雄性和雌性 C57BL/6 小鼠在差异强化低反应率(DRL)任务中的表现。全身 KOR 拮抗作用也阻断了应激引起的 DRL 表现障碍。KOR 激活增加了 DRL 任务中的错误反应“爆发”,并增加了大理石掩埋,这表明观察到的 DRL 表现障碍可能归因于 KOR 诱导的强迫行为增加。通过向腹侧被盖区(VTA)注射长效拮抗剂 nor-BNI 局部失活 KOR,而不是向边缘前皮质(PFC)或中缝核(DRN)注射,可防止全身 KOR 激活引起的 DRL 表现障碍。Cre 依赖性基因敲除 KOR 从多巴胺能神经元,但不是 5-羟色胺能神经元,也阻止了 KOR 介导的 DRL 表现障碍。在分子水平上,我们发现这些破坏作用不需要依赖 arrestin 的信号转导,因为全局敲除 G 蛋白受体激酶 3(GRK3)或多巴胺神经元中特异性敲除 GRK3/arrestin 依赖性 p38α MAPK 均不能阻断 KOR 介导的 DRL 破坏。然后,我们表明,纳呋拉啡,一种临床可用的 G 偏倚 KOR 激动剂,也可以产生 DRL 破坏。总之,这些研究表明,VTA 多巴胺神经元中的 KOR 激活以 GRK3/arrestin 独立的方式破坏行为抑制,并表明 KOR 拮抗剂可能有助于减少应激诱导的强迫行为。