Suppr超能文献

DEAD盒蛋白CYT-19利用其C末端的精氨酸残基来束缚RNA底物。

The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.

作者信息

Busa Veronica F, Rector Maxwell J, Russell Rick

机构信息

Department of Molecular Biosciences and Institute for Cellular & Molecular Biology, University of Texas at Austin , Austin, Texas 78712, United States.

出版信息

Biochemistry. 2017 Jul 18;56(28):3571-3578. doi: 10.1021/acs.biochem.7b00362. Epub 2017 Jul 7.

Abstract

DEAD-box proteins are nonprocessive RNA helicases that play diverse roles in cellular processes. The Neurospora crassa DEAD-box protein CYT-19 promotes mitochondrial group I intron splicing and functions as a general RNA chaperone. CYT-19 includes a disordered, arginine-rich "C-tail" that binds RNA, positioning the helicase core to capture and unwind nearby RNA helices. Here we probed the C-tail further by varying the number and positions of arginines within it. We found that removing sets of as few as four of the 11 arginines reduced RNA unwinding activity (k/K) to a degree equivalent to that seen upon removal of the C-tail, suggesting that a minimum or "threshold" number of arginines is required. In addition, a mutant with 16 arginines displayed RNA unwinding activity greater than that of wild-type CYT-19. The C-tail modifications impacted unwinding only of RNA helices within constructs that included an adjacent helix or structured RNA element that would allow C-tail binding, indicating that the helicase core remained active in the mutants. In addition, changes in RNA unwinding efficiency of the mutants were mirrored by changes in functional RNA affinity, as determined from the RNA concentration dependence of ATPase activity, suggesting that the C-tail functions primarily to increase RNA affinity. Interestingly, the salt concentration dependence of RNA unwinding activity is unaffected by C-tail composition, suggesting that the C-tail uses primarily hydrogen bonding, not electrostatic interactions, to bind double-stranded RNA. Our results provide insights into how an unstructured C-tail contributes to DEAD-box protein activity and suggest parallels with other families of RNA- and DNA-binding proteins.

摘要

DEAD盒蛋白是非进行性RNA解旋酶,在细胞过程中发挥多种作用。粗糙脉孢菌的DEAD盒蛋白CYT-19促进线粒体I组内含子剪接,并作为一种通用的RNA伴侣发挥作用。CYT-19包含一个无序的、富含精氨酸的“C末端”,该末端结合RNA,将解旋酶核心定位以捕获并解开附近的RNA螺旋。在这里,我们通过改变其中精氨酸的数量和位置进一步探究了C末端。我们发现,去除11个精氨酸中少至4个的一组精氨酸会将RNA解旋活性(k/K)降低到与去除C末端时相当的程度,这表明需要最少或“阈值”数量的精氨酸。此外,一个含有16个精氨酸的突变体表现出比野生型CYT-19更高的RNA解旋活性。C末端修饰仅影响包含相邻螺旋或结构化RNA元件(允许C末端结合)的构建体中的RNA螺旋解旋,这表明解旋酶核心在突变体中仍然活跃。此外,突变体RNA解旋效率的变化与功能性RNA亲和力的变化相对应,这是根据ATP酶活性对RNA浓度的依赖性确定的,表明C末端主要起到增加RNA亲和力的作用。有趣的是,RNA解旋活性对盐浓度的依赖性不受C末端组成的影响,这表明C末端主要通过氢键而非静电相互作用来结合双链RNA。我们的结果为无结构的C末端如何促进DEAD盒蛋白活性提供了见解,并暗示了与其他RNA和DNA结合蛋白家族的相似之处。

相似文献

1
The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
Biochemistry. 2017 Jul 18;56(28):3571-3578. doi: 10.1021/acs.biochem.7b00362. Epub 2017 Jul 7.
2
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2928-36. doi: 10.1073/pnas.1404307111. Epub 2014 Jul 7.
3
Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
J Mol Biol. 2008 Feb 1;375(5):1344-64. doi: 10.1016/j.jmb.2007.11.041. Epub 2007 Nov 22.
4
Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16698-703. doi: 10.1073/pnas.0603127103. Epub 2006 Oct 30.
6
Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
J Mol Biol. 2009 Jun 19;389(4):674-93. doi: 10.1016/j.jmb.2009.04.043. Epub 2009 Apr 23.
7
ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
J Biol Chem. 2021 Jan-Jun;296:100132. doi: 10.1074/jbc.RA120.015029. Epub 2020 Dec 5.
9
Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
Nature. 2012 Oct 4;490(7418):121-5. doi: 10.1038/nature11402. Epub 2012 Sep 2.
10
Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
Methods Enzymol. 2022;673:53-76. doi: 10.1016/bs.mie.2022.04.004. Epub 2022 May 14.

引用本文的文献

1
Regulation and mechanisms of action of RNA helicases.
RNA Biol. 2024 Jan;21(1):24-38. doi: 10.1080/15476286.2024.2415801. Epub 2024 Oct 22.
2
Tracking Native Ribozyme Folding with Fluorescence.
Biochemistry. 2023 Nov 21;62(22):3173-3180. doi: 10.1021/acs.biochem.3c00363. Epub 2023 Nov 1.
3
Protein-RNA interactions: from mass spectrometry to drug discovery.
Essays Biochem. 2023 Mar 29;67(2):175-186. doi: 10.1042/EBC20220177.
4
ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
J Biol Chem. 2021 Jan-Jun;296:100132. doi: 10.1074/jbc.RA120.015029. Epub 2020 Dec 5.
5
The DEAD-box protein Hera is a general RNA binding protein and plays a key role in tRNA metabolism.
RNA. 2020 Nov;26(11):1557-1574. doi: 10.1261/rna.075580.120. Epub 2020 Jul 15.
6
Mechanisms and Regulation of RNA Condensation in RNP Granule Formation.
Trends Biochem Sci. 2020 Sep;45(9):764-778. doi: 10.1016/j.tibs.2020.05.002. Epub 2020 May 11.
7
The DEAD-Box RNA Helicases of as a Model to Evaluate Genetic Compensation Among Duplicate Genes.
Front Microbiol. 2018 Sep 25;9:2261. doi: 10.3389/fmicb.2018.02261. eCollection 2018.
8
Proteins That Chaperone RNA Regulation.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.RWR-0026-2018.
9
Experimental and Mathematical Analyses Relating Circadian Period and Phase of Entrainment in Neurospora crassa.
J Biol Rhythms. 2017 Dec;32(6):550-559. doi: 10.1177/0748730417738611. Epub 2017 Nov 28.
10
Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs.
Biochem Soc Trans. 2017 Dec 15;45(6):1313-1321. doi: 10.1042/BST20170095. Epub 2017 Nov 17.

本文引用的文献

3
DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
PLoS Biol. 2014 Oct 28;12(10):e1001981. doi: 10.1371/journal.pbio.1001981. eCollection 2014 Oct.
4
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2928-36. doi: 10.1073/pnas.1404307111. Epub 2014 Jul 7.
5
Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules.
Photochem Photobiol Sci. 2014 Mar;13(3):541-7. doi: 10.1039/c3pp50369k. Epub 2014 Jan 27.
6
7
Toward a molecular understanding of RNA remodeling by DEAD-box proteins.
RNA Biol. 2013 Jan;10(1):44-55. doi: 10.4161/rna.22210. Epub 2012 Sep 20.
8
ATP utilization and RNA conformational rearrangement by DEAD-box proteins.
Annu Rev Biophys. 2012;41:247-67. doi: 10.1146/annurev-biophys-050511-102243. Epub 2012 Feb 13.
9
Intrinsically disordered regions as affinity tuners in protein-DNA interactions.
Mol Biosyst. 2012 Jan;8(1):47-57. doi: 10.1039/c1mb05273j. Epub 2011 Sep 15.
10
Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12254-9. doi: 10.1073/pnas.1109566108. Epub 2011 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验