Kahn Johannes, Kaul David, Böning Georg, Rotzinger Roman, Freyhardt Patrick, Schwabe Philipp, Maurer Martin H, Renz Diane Miriam, Streitparth Florian
Department of Radiology, Charité School of Medicine and University Hospital, Berlin, Germany.
Department of Radiation Oncology, Charité School of Medicine and University Hospital, Berlin, Germany.
Rofo. 2017 Sep;189(9):844-854. doi: 10.1055/s-0043-108996. Epub 2017 Jun 26.
As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. 61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50 %). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85 s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40 % (DLP 1087 vs. 647 mGyxcm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR) according to the examined body region (head, lung, body, bone) combined with a split bolus CA injection protocol allows for a high-quality CT examination and a relevant reduction of radiation exposure in the examination of polytraumatized patients · Dedicated adaption of the CT trauma protocol allows for an optimized examination.. · Different levels of iterative reconstruction, tube voltage and the CA injection protocol are crucial.. · A reduction of radiation exposure of more than 40 % with good image quality is possible.. · Kahn J, Kaul D, Böning G et al. Quality and Dose Optimized CT Trauma Protocol - Recommendation from a University Level-I Trauma Center. Fortschr Röntgenstr 2017; 189: 844 - 854.
作为一家区域一级的创伤中心,我们为了优化质量和剂量,对多发伤患者的计算机断层扫描(CT)采集进行了评估。采用了自适应统计迭代重建[(AS)IR]水平、降低管电压以及团注分割对比剂(CA)方案。61例患者被分为3个不同的组,这些组在管电压(120 - 140 kVp)和应用的ASIR重建水平(ASIR 20 - 50%)方面存在差异。CT方案包括头部平扫,随后对全身进行单次对比增强扫描(64层螺旋CT)。CA(350 mg/ml碘)以团注分割的方式注射,即先注射100 ml(2 ml/s),接着注射20 ml氯化钠(1 ml/s),再注射60 ml(4 ml/s),最后注射40 ml氯化钠(4 ml/s),扫描延迟85 s,以便在单次采集中检测动脉系统和实质器官的损伤。对创伤患者常受伤的实质器官的图像质量进行了定量(信噪比/对比噪声比)和定性(5分李克特量表)评估。评估了辐射剂量。使用IR并结合降低管电压可获得良好的定性和定量图像质量,且辐射剂量显著降低超过40%(剂量长度乘积1087 vs. 647 mGyxcm)。由于采用了专门的方案,包括根据不同的层厚、卷积核以及用于评估头部、肺部、身体和骨骼损伤模式的检查区域调整不同水平的IR,图像质量得以提高。综合我们的结果,我们建议实施多发伤方案,管电压为120 kVp,以及以下IR水平:胸部CT 5mm:ASIR 20;胸部CT 0.625mm:ASIR 40;肺部2.5mm:ASIR 30,身体5mm:ASIR 40;身体1.25mm:ASIR 50;身体0.625mm:ASIR 0。根据检查的身体部位(头部、肺部、身体、骨骼)对CT创伤方案(管电压降低水平和IR)进行专门调整,并结合团注分割CA注射方案,可在多发伤患者检查中实现高质量的CT检查并显著降低辐射剂量。· CT创伤方案的专门调整可实现优化检查。· 不同水平的迭代重建、管电压和CA注射方案至关重要。· 可在图像质量良好的情况下将辐射剂量降低超过40%。· 卡恩J、考尔D、博宁G等。质量和剂量优化的CT创伤方案——来自大学一级创伤中心的建议。《Fortschr Röntgenstr》2017年;189:844 - 854。