Suppr超能文献

利用末端呼吸氧化酶之间的合成致死性来杀死和清除宿主感染。

Exploiting the synthetic lethality between terminal respiratory oxidases to kill and clear host infection.

机构信息

Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore 636921.

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426-7431. doi: 10.1073/pnas.1706139114. Epub 2017 Jun 26.

Abstract

The recent discovery of small molecules targeting the cytochrome : in triggered interest in the terminal respiratory oxidases for antituberculosis drug development. The mycobacterial cytochrome : consists of a menaquinone:cytochrome reductase ( ) and a cytochrome -type oxidase. The clinical-stage drug candidate Q203 interferes with the function of the subunit b of the menaquinone:cytochrome reductase. Despite the affinity of Q203 for the : complex, the drug is only bacteriostatic and does not kill drug-tolerant persisters. This raises the possibility that the alternate terminal -type oxidase (cytochrome oxidase) is capable of maintaining a membrane potential and menaquinol oxidation in the presence of Q203. Here, we show that the electron flow through the cytochrome oxidase is sufficient to maintain respiration and ATP synthesis at a level high enough to protect from Q203-induced bacterial death. Upon genetic deletion of the cytochrome oxidase-encoding genes , Q203 inhibited mycobacterial respiration completely, became bactericidal, killed drug-tolerant mycobacterial persisters, and rapidly cleared infection in vivo. These results indicate a synthetic lethal interaction between the two terminal respiratory oxidases that can be exploited for anti-TB drug development. Our findings should be considered in the clinical development of drugs targeting the cytochrome : , as well as for the development of a drug combination targeting oxidative phosphorylation in .

摘要

最近发现的小分子靶向细胞色素 :在 引起了人们对结核分枝杆菌终端呼吸氧化酶的兴趣,用于抗结核药物的开发。分枝杆菌细胞色素 :由一个menaquinone:细胞色素 还原酶()和一个细胞色素 型氧化酶组成。处于临床阶段的候选药物 Q203 干扰menaquinone:细胞色素 还原酶亚基 b 的功能。尽管 Q203 对 :复合物的亲和力很高,但该药物仅具有抑菌作用,不能杀死耐药物的持久菌。这就提出了一种可能性,即替代的末端 型氧化酶(细胞色素氧化酶)能够在 Q203 的存在下维持膜电位和menaquinol 的氧化。在这里,我们表明,电子通过细胞色素氧化酶的流动足以维持呼吸和 ATP 合成的水平,足以保护免受 Q203 诱导的细菌死亡。当细胞色素氧化酶编码基因 :的基因被删除时,Q203 完全抑制分枝杆菌的呼吸,成为杀菌药物,杀死耐药物的分枝杆菌持久菌,并迅速清除体内的 感染。这些结果表明,两种末端呼吸氧化酶之间存在合成致死相互作用,可以用于抗结核药物的开发。我们的发现应该在针对细胞色素 :的药物的临床开发中得到考虑,以及针对靶向氧化磷酸化的药物联合开发中得到考虑。

相似文献

1
Exploiting the synthetic lethality between terminal respiratory oxidases to kill and clear host infection.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426-7431. doi: 10.1073/pnas.1706139114. Epub 2017 Jun 26.
3
Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics?
Front Cell Infect Microbiol. 2020 Nov 23;10:589318. doi: 10.3389/fcimb.2020.589318. eCollection 2020.
4
Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis.
EMBO Mol Med. 2021 Jan 11;13(1):e13207. doi: 10.15252/emmm.202013207. Epub 2020 Dec 7.
5
Targeting the cytochrome oxidases for drug development in mycobacteria.
Prog Biophys Mol Biol. 2020 May;152:45-54. doi: 10.1016/j.pbiomolbio.2020.02.001. Epub 2020 Feb 18.
7
Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation.
Antimicrob Agents Chemother. 2019 Feb 26;63(3). doi: 10.1128/AAC.01841-18. Print 2019 Mar.
9
Cytochrome bc1-aa3 Oxidase Supercomplex As Emerging and Potential Drug Target Against Tuberculosis.
Curr Mol Pharmacol. 2022;15(2):380-392. doi: 10.2174/1874467214666210928152512.

引用本文的文献

1
Pyrroloquinolone-Based Compounds as a Novel Antimycobacterial Chemotype.
ACS Med Chem Lett. 2025 Jun 3;16(6):1139-1146. doi: 10.1021/acsmedchemlett.5c00183. eCollection 2025 Jun 12.
2
Chalkophore-mediated respiratory oxidase flexibility controls virulence.
Elife. 2025 Jun 5;14:RP105794. doi: 10.7554/eLife.105794.
3
Unprecedented in vivo activity of telacebec against Mycobacterium leprae.
PLoS Negl Trop Dis. 2025 May 8;19(5):e0013076. doi: 10.1371/journal.pntd.0013076. eCollection 2025 May.
4
Structural and mechanistic study of a novel inhibitor analogue of cytochrome bc:aa.
NPJ Drug Discov. 2025;2(1):6. doi: 10.1038/s44386-025-00008-3. Epub 2025 Apr 2.
5
Drug-loaded liposomes for macrophage targeting in : development, characterization and macrophage infection study.
3 Biotech. 2025 Feb;15(2):52. doi: 10.1007/s13205-025-04208-6. Epub 2025 Jan 30.
6
A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .
Appl Environ Microbiol. 2025 Feb 19;91(2):e0236024. doi: 10.1128/aem.02360-24. Epub 2025 Jan 24.
8
F-ATP Synthase Inhibitors and Targets.
Antibiotics (Basel). 2024 Dec 3;13(12):1169. doi: 10.3390/antibiotics13121169.
9
Menaquinone-specific turnover by Mycobacterium tuberculosis cytochrome bd is redox regulated by the Q-loop disulfide bond.
J Biol Chem. 2025 Feb;301(2):108094. doi: 10.1016/j.jbc.2024.108094. Epub 2024 Dec 18.
10
Interplay of niche and respiratory network in shaping bacterial colonization.
J Biol Chem. 2025 Jan;301(1):108052. doi: 10.1016/j.jbc.2024.108052. Epub 2024 Dec 9.

本文引用的文献

1
Tuberculosis drug discovery needs public-private consortia.
Drug Discov Today. 2017 Mar;22(3):477-478. doi: 10.1016/j.drudis.2016.09.026. Epub 2016 Oct 4.
2
The number of privately treated tuberculosis cases in India: an estimation from drug sales data.
Lancet Infect Dis. 2016 Nov;16(11):1255-1260. doi: 10.1016/S1473-3099(16)30259-6. Epub 2016 Aug 25.
3
Turning the respiratory flexibility of Mycobacterium tuberculosis against itself.
Nat Commun. 2016 Aug 10;7:12393. doi: 10.1038/ncomms12393.
4
Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis.
Eur Respir J. 2016 Feb;47(2):564-74. doi: 10.1183/13993003.00724-2015. Epub 2015 Dec 2.
5
Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis.
N Engl J Med. 2015 Nov 12;373(20):1986-8. doi: 10.1056/NEJMc1505196.
6
Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.
Nat Commun. 2015 Jul 9;6:7659. doi: 10.1038/ncomms8659.
7
Energetics of pathogenic bacteria and opportunities for drug development.
Adv Microb Physiol. 2014;65:1-62. doi: 10.1016/bs.ampbs.2014.08.001. Epub 2014 Nov 4.
8
Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria.
Microbiol Spectr. 2014 Jun;2(3). doi: 10.1128/microbiolspec.MGM2-0015-2013.
9
Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2014 Nov;58(11):6962-5. doi: 10.1128/AAC.03486-14. Epub 2014 Aug 25.
10
Multidrug-resistant tuberculosis and culture conversion with bedaquiline.
N Engl J Med. 2014 Aug 21;371(8):723-32. doi: 10.1056/NEJMoa1313865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验