Department of Physics, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China.
Nat Commun. 2017 Jun 26;8(1):35. doi: 10.1038/s41467-017-00048-y.
Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS/MoS monolayer heterostructure on top of an AlO-capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.
基于过渡金属二卤化物的原子层状横向异质结构最近已经得到证明。在单层过渡金属二卤化物中,激子能量转移通常限制在短距离(~1 μm)内,并且在横向异质结构的界面区域可能会发生额外的损耗。为了克服这些挑战,我们通过将 WS/MoS 单层异质结构放置在 AlO 覆盖的 Ag 单晶板上来实验性地实现了平面金属-氧化物-半导体结构。我们发现,通过激子-表面等离激元-激子转换机制,激子能量转移范围可以扩展到混合结构中的数十微米,从而允许从支持高能激子共振的单层过渡金属二卤化物区域到横向异质结构中具有低能激子共振的不同过渡金属二卤化物区域的级联激子能量转移。所实现的平面混合结构将二维发光材料与平面等离子体波导相结合,为开发集成光子和等离子体器件提供了巨大的潜力。单层过渡金属二卤化物中的激子能量转移限于短距离。在这里,Shi 等人制造了一种平面金属-氧化物-半导体结构,并表明激子能量转移可以通过激子-表面等离激元-激子转换机制扩展到数十微米。