School of Microelectronics, Shandong University, Jinan, China.
Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, China.
Int J Comput Assist Radiol Surg. 2022 Feb;17(2):363-372. doi: 10.1007/s11548-021-02505-y. Epub 2021 Dec 8.
It plays a significant role to accurately and automatically segment lesions from ultrasound (US) images in clinical application. Nevertheless, it is extremely challenging because distinct components of heterogeneous lesions are similar to background in US images. In our study, a transfer learning-based method is developed for full-automatic joint segmentation of nodular lesions.
Transfer learning is a widely used method to build high performing computer vision models. Our transfer learning model is a novel type of densely connected convolutional network (SDenseNet). Specifically, we pre-train SDenseNet based on ImageNet dataset. Then our SDenseNet is designed as a multi-channel model (denoted Mul-DenseNet) for automatically jointly segmenting lesions. As comparison, our SDenseNet using different transfer learning is applied to segmenting nodules, respectively. In our study, we find that more datasets for pre-training and multiple pre-training do not always work in segmentation of nodules, and the performance of transfer learning depends on a judicious choice of dataset and characteristics of targets.
Experimental results illustrate a significant performance of the Mul-DenseNet compared to that of other methods in the study. Specially, for thyroid nodule segmentation, overlap metric (OM), dice ratio (DR), true-positive rate (TPR), false-positive rate (FPR) and modified Hausdorff distance (MHD) are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] mm, respectively; for breast nodule segmentation, OM, DR, TPR, FPR and MHD are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] mm, respectively.
The experimental results illustrate our transfer learning models are very effective in segmentation of lesions, which also demonstrate that it is potential of our proposed Mul-DenseNet model in clinical applications. This model can reduce heavy workload of the physicians so that it can avoid misdiagnosis cases due to excessive fatigue. Moreover, it is easy and reproducible to detect lesions without medical expertise.
在临床应用中,准确、自动地从超声(US)图像中分割病变具有重要意义。然而,由于不均匀病变的不同成分与 US 图像的背景相似,因此这极具挑战性。在本研究中,我们开发了一种基于迁移学习的方法,用于实现结节性病变的全自动联合分割。
迁移学习是构建高性能计算机视觉模型的常用方法。我们的迁移学习模型是一种新型的密集连接卷积网络(SDenseNet)。具体来说,我们基于 ImageNet 数据集对 SDenseNet 进行预训练。然后,我们将 SDenseNet 设计为用于自动联合分割病变的多通道模型(表示为 Mul-DenseNet)。作为比较,我们分别将使用不同迁移学习的 SDenseNet 应用于结节分割。在本研究中,我们发现更多的数据集用于预训练和多次预训练并不总是适用于结节分割,而且迁移学习的性能取决于数据集和目标特征的合理选择。
实验结果表明,与研究中的其他方法相比,Mul-DenseNet 的性能有显著提高。具体来说,对于甲状腺结节分割,重叠度量(OM)、骰子比(DR)、真阳性率(TPR)、假阳性率(FPR)和修正 Hausdorff 距离(MHD)分别为[公式:见文本]、[公式:见文本]、[公式:见文本]、[公式:见文本]和[公式:见文本]mm;对于乳腺结节分割,OM、DR、TPR、FPR 和 MHD 分别为[公式:见文本]、[公式:见文本]、[公式:见文本]、[公式:见文本]和[公式:见文本]mm。
实验结果表明,我们的迁移学习模型在病变分割中非常有效,这也证明了我们提出的 Mul-DenseNet 模型在临床应用中的潜力。该模型可以减轻医生的繁重工作量,从而避免因过度疲劳而导致的误诊病例。此外,无需医学专业知识即可轻松且可重复地检测病变。