Suppr超能文献

软组织肉瘤的放射组学分析可区分中等级别与高等级病变。

Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions.

机构信息

Department of Electronic, Information, and Bioengineering, Politecnico di Milano, Milan, Italy.

Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.

出版信息

J Magn Reson Imaging. 2018 Mar;47(3):829-840. doi: 10.1002/jmri.25791. Epub 2017 Jun 27.

Abstract

PURPOSE

To assess the feasibility of grading soft tissue sarcomas (STSs) using MRI features (radiomics).

MATERIALS AND METHODS

MRI (echo planar SE, 1.5T) from 19 patients with STSs and a known histological grading, were retrospectively analyzed. The apparent diffusion coefficient (ADC) maps, obtained by diffusion-weighted imaging acquisitions, were analyzed through 65 radiomic features, intensity-based (first order statistics, FOS) and texture (gray level co-occurrence matrix, GLCM; and gray level run length matrix, GLRLM) features. Feature selection (sequential forward floating search) and classification (k-nearest neighbor classifier) were performed to distinguish intermediate- from high-grade STSs. Classification was performed using the three different sub-groups of features separately as well as all the features together. The entire dataset was divided in three subsets: the training, validation and test set, containing, respectively, 60, 30, and 10% of the data.

RESULTS

Intermediate-grade lesions had a higher and less disperse ADC values compared with high-grade ones: most of FOS related to intensity are higher for the intermediate-grade STSs, while FOS related to signal variability were higher in the high grade (e.g., the feature variance is 2.610  ± 0.910 versus 3.310  ± 1.610 , P = 0.3). The GLCM features related to entropy and dissimilarity were higher in the high-grade. When performing classification, the best accuracy is obtained with a maximum of three features for each subgroup, FOS features being those leading to the best classification (validation set: FOS accuracy 0.90 ± 0.11, area under the curve [AUC] 0.85 ± 0.16; test set: FOS accuracy 0.88 ± 0.25, AUC 0.87 ± 0.34).

CONCLUSION

Good accuracy and AUC could be obtained using only few Radiomic features, belonging to the FOS class.

LEVEL OF EVIDENCE

4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:829-840.

摘要

目的

评估使用 MRI 特征(放射组学)对软组织肉瘤(STS)进行分级的可行性。

材料与方法

回顾性分析了 19 例 STS 患者的 MRI(回波平面 SE,1.5T)资料和已知的组织学分级。通过扩散加权成像采集获得表观扩散系数(ADC)图,通过 65 个放射组学特征进行分析,包括基于强度的特征(一阶统计量,FOS)和纹理特征(灰度共生矩阵,GLCM;和灰度游程长度矩阵,GLRLM)。进行特征选择(顺序前向浮动搜索)和分类(k-最近邻分类器),以区分中高级 STS。使用三种不同的特征子组以及所有特征分别进行分类,并将整个数据集分为三个子集:训练集、验证集和测试集,分别包含数据的 60%、30%和 10%。

结果

中级病变的 ADC 值较高且分布较散,与高级病变相比:大多数与强度相关的 FOS 特征值在中级 STS 中较高,而与信号变异性相关的 FOS 特征值在高级病变中较高(例如,特征方差为 2.610  ± 0.910 与 3.310  ± 1.610 ,P = 0.3)。与熵和不相似性相关的 GLCM 特征在高级病变中较高。在进行分类时,每个子组使用最多三个特征可获得最佳准确性,FOS 特征是导致最佳分类的特征(验证集:FOS 准确性 0.90 ± 0.11,曲线下面积 [AUC] 0.85 ± 0.16;测试集:FOS 准确性 0.88 ± 0.25,AUC 0.87 ± 0.34)。

结论

仅使用少量属于 FOS 类的放射组学特征即可获得良好的准确性和 AUC。

证据水平

4 级 技术功效:2 期 J. 磁共振成像 2018;47:829-840.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验