Suppr超能文献

无线双极纳米孔电极用于单小分子检测。

Wireless Bipolar Nanopore Electrode for Single Small Molecule Detection.

机构信息

Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China.

出版信息

Anal Chem. 2017 Jul 18;89(14):7382-7387. doi: 10.1021/acs.analchem.7b00729. Epub 2017 Jul 7.

Abstract

Solid-state nanopore-based techniques have become a promising strategy for diverse single molecule detections. Owing to the challenge in well and rapid fabrication of solid-state nanopores with the diameter less than 2 nm, small molecule detection is hard to be addressed by existing label-free nanopore methods. In this work, we for the first time propose a metal-coated wireless nanopore electrode (WNE) which offers a novel and generally accessible detection method for analyzing small molecules and ions at the single molecule/ion level. Here, a silver-coated WNE is developed as a proof-of-principle model which achieves the detection the self-generated H, the smallest known molecule, and Ag at single molecule/ion level by monitoring the enhanced ionic signatures. Under a bias potential of -800 mV, the WNE could accomplish the distinction of as low as 14 H molecules and 28 Ag from one spike signal. The finite element simulation is introduced to suggest that the generation of H at the orifice of the WNE results in the enhanced spike of ionic current. As a proof-of-concept experiment, the WNE is further utilized to directly detect Hg from 100 pM to 100 nM by monitoring the frequency of the spike signals. This novel nanoelectrode provides a brand new label-free, ultrasensitive, and simple detection mechanism for various small molecules/ions detection, especially for redox analytes.

摘要

基于固态纳米孔的技术已经成为一种有前途的多样化单分子检测策略。由于在直径小于 2nm 的固态纳米孔的良好和快速制造方面存在挑战,现有的无标记纳米孔方法很难用于小分子检测。在这项工作中,我们首次提出了一种金属涂层无线纳米孔电极(WNE),为分析小分子和离子提供了一种新颖且普遍适用的单分子/离子水平检测方法。在这里,我们开发了一种银涂层 WNE 作为原理验证模型,通过监测增强的离子信号实现了对自产生的 H(已知的最小分子)和 Ag 的单分子/离子水平检测。在-800mV 的偏置电压下,WNE 能够从一个尖峰信号中区分低至 14 个 H 分子和 28 个 Ag。引入有限元模拟表明,WNE 孔口处 H 的产生导致离子电流尖峰的增强。作为概念验证实验,通过监测尖峰信号的频率,WNE 进一步用于直接检测 100pM 至 100nM 的 Hg。这种新型纳米电极为各种小分子/离子检测提供了一种全新的无标记、超灵敏和简单的检测机制,特别是对于氧化还原分析物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验