MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China.
ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23748-23755. doi: 10.1021/acsami.7b05302. Epub 2017 Jul 5.
Bi-self-doped BiVO (Bi-BVO) nanotubes with p-n homojunctions are fabricated via an oxygen-induced strategy. Calcinating the as-spun fibers with abundant oxygen plays a pivotal role in achieving Bi self-doping. Density functional theory calculations and experimental results indicate that Bi self-doping can narrow the band gap of BiVO, which contributes to enhancing light harvesting. Moreover, Bi self-doping endows BiVO with n- and p-type semiconductor characteristics simultaneously, resulting in the construction of p-n homojunctions for retarding rapid electron-hole recombination. Benefiting from these favorable properties, Bi-BVO exhibits a superior photocatalytic performance in contrast to that of pristine BiVO. Furthermore, this is the first report describing the achievement of p-n homojunctions through self-doping, which gives full play to the advantages of self-doping.
通过氧诱导策略制备了具有 p-n 同质结的双自掺杂 BiVO(Bi-BVO)纳米管。用丰富的氧对纺丝纤维进行煅烧在实现 Bi 自掺杂方面起着关键作用。密度泛函理论计算和实验结果表明,Bi 自掺杂可以缩小 BiVO 的带隙,有助于提高光捕获。此外,Bi 自掺杂使 BiVO 同时具有 n 型和 p 型半导体特性,从而构建 p-n 同质结以减缓快速的电子-空穴复合。得益于这些有利的特性,Bi-BVO 的光催化性能优于原始 BiVO。此外,这是首次报道通过自掺杂实现 p-n 同质结,充分发挥了自掺杂的优势。