Suppr超能文献

用斑驳切换说明的理解非线性生化网络中空间效应和传输现象的概念和实验工具。

Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching.

作者信息

Pompano Rebecca R, Chiang Andrew H, Kastrup Christian J, Ismagilov Rustem F

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904; email:

Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637; email:

出版信息

Annu Rev Biochem. 2017 Jun 20;86:333-356. doi: 10.1146/annurev-biochem-060815-014207.

Abstract

Many biochemical systems are spatially heterogeneous and exhibit nonlinear behaviors, such as state switching in response to small changes in the local concentration of diffusible molecules. Systems as varied as blood clotting, intracellular calcium signaling, and tissue inflammation are all heavily influenced by the balance of rates of reaction and mass transport phenomena including flow and diffusion. Transport of signaling molecules is also affected by geometry and chemoselective confinement via matrix binding. In this review, we use a phenomenon referred to as patchy switching to illustrate the interplay of nonlinearities, transport phenomena, and spatial effects. Patchy switching describes a change in the state of a network when the local concentration of a diffusible molecule surpasses a critical threshold. Using patchy switching as an example, we describe conceptual tools from nonlinear dynamics and chemical engineering that make testable predictions and provide a unifying description of the myriad possible experimental observations. We describe experimental microfluidic and biochemical tools emerging to test conceptual predictions by controlling transport phenomena and spatial distribution of diffusible signals, and we highlight the unmet need for in vivo tools.

摘要

许多生物化学系统在空间上是异质的,并表现出非线性行为,例如响应可扩散分子局部浓度的微小变化而发生状态切换。诸如血液凝固、细胞内钙信号传导和组织炎症等各种系统都受到反应速率和包括流动与扩散在内的质量传输现象平衡的严重影响。信号分子的传输也受到几何形状和通过基质结合的化学选择性限制的影响。在本综述中,我们使用一种称为斑块切换的现象来说明非线性、传输现象和空间效应之间的相互作用。斑块切换描述了当可扩散分子的局部浓度超过临界阈值时网络状态的变化。以斑块切换为例,我们描述了来自非线性动力学和化学工程的概念工具,这些工具能够做出可测试的预测,并对无数可能的实验观察结果提供统一的描述。我们描述了新兴的实验性微流体和生化工具,这些工具通过控制传输现象和可扩散信号的空间分布来测试概念预测,并且我们强调了对体内工具的未满足需求。

相似文献

2
Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.
Acc Chem Res. 2008 Apr;41(4):549-58. doi: 10.1021/ar700174g. Epub 2008 Jan 25.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Confinement regulates complex biochemical networks: initiation of blood clotting by "diffusion acting".
Biophys J. 2009 Oct 21;97(8):2137-45. doi: 10.1016/j.bpj.2009.08.004.
5
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Acc Chem Res. 2014 Apr 15;47(4):1165-73. doi: 10.1021/ar4002608. Epub 2014 Feb 20.
6
Nonlinear Phenomena in Microfluidics.
Chem Rev. 2022 Apr 13;122(7):6921-6937. doi: 10.1021/acs.chemrev.1c00985. Epub 2022 Feb 23.
8
In silico modeling of endocrine organ-on-a-chip systems.
Math Biosci. 2022 Oct;352:108900. doi: 10.1016/j.mbs.2022.108900. Epub 2022 Sep 6.
9
Transcriptional regulatory networks in human lung adenocarcinoma.
Mol Med Rep. 2012 Nov;6(5):961-6. doi: 10.3892/mmr.2012.1034. Epub 2012 Aug 14.
10

引用本文的文献

3
Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues.
Annu Rev Biomed Eng. 2021 Jul 13;23:461-491. doi: 10.1146/annurev-bioeng-082420-124920. Epub 2021 Apr 19.
4
Acute Lymph Node Slices Are a Functional Model System to Study Immunity Ex Vivo.
ACS Pharmacol Transl Sci. 2021 Jan 8;4(1):128-142. doi: 10.1021/acsptsci.0c00143. eCollection 2021 Feb 12.
5
Spatially Resolved Analytical Chemistry in Intact, Living Tissues.
Anal Chem. 2020 Dec 1;92(23):15255-15262. doi: 10.1021/acs.analchem.0c03625. Epub 2020 Nov 17.
6
User-defined local stimulation of live tissue through a movable microfluidic port.
Lab Chip. 2018 Jul 10;18(14):2003-2012. doi: 10.1039/c8lc00204e.

本文引用的文献

1
Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo.
Analyst. 2017 Feb 14;142(4):649-659. doi: 10.1039/c6an02042a. Epub 2016 Nov 30.
2
Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking.
Nat Struct Mol Biol. 2016 Jun;23(6):608-18. doi: 10.1038/nsmb.3218. Epub 2016 May 2.
3
Blood flow and mass transfer regulation of coagulation.
Blood Rev. 2016 Sep;30(5):357-68. doi: 10.1016/j.blre.2016.04.004. Epub 2016 Apr 29.
4
Density-Dependent Differentiation of Bacteria in Spatially Structured Open Systems.
Biophys J. 2016 Apr 12;110(7):1648-1660. doi: 10.1016/j.bpj.2016.03.007.
5
Segmented flow sampling with push-pull theta pipettes.
Analyst. 2016 Mar 21;141(6):1958-65. doi: 10.1039/c6an00028b.
6
Engineering Stem Cell Organoids.
Cell Stem Cell. 2016 Jan 7;18(1):25-38. doi: 10.1016/j.stem.2015.12.005.
7
Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane.
Anal Chem. 2016 Jan 19;88(2):1230-7. doi: 10.1021/acs.analchem.5b03541. Epub 2016 Jan 4.
8
Biomaterials and emerging anticancer therapeutics: engineering the microenvironment.
Nat Rev Cancer. 2016 Jan;16(1):56-66. doi: 10.1038/nrc.2015.3.
9
Medibots: Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release.
Adv Mater. 2016 Feb 3;28(5):832-7. doi: 10.1002/adma.201504327. Epub 2015 Nov 30.
10
Self-propelled particles that transport cargo through flowing blood and halt hemorrhage.
Sci Adv. 2015 Oct 2;1(9):e1500379. doi: 10.1126/sciadv.1500379. eCollection 2015 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验