Suppr超能文献

BRIE:单细胞转录组范围的剪接定量分析

BRIE: transcriptome-wide splicing quantification in single cells.

作者信息

Huang Yuanhua, Sanguinetti Guido

机构信息

School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK.

Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, EH9 3BF, UK.

出版信息

Genome Biol. 2017 Jun 27;18(1):123. doi: 10.1186/s13059-017-1248-5.

Abstract

Single-cell RNA-seq (scRNA-seq) provides a comprehensive measurement of stochasticity in transcription, but the limitations of the technology have prevented its application to dissect variability in RNA processing events such as splicing. Here, we present BRIE (Bayesian regression for isoform estimation), a Bayesian hierarchical model that resolves these problems by learning an informative prior distribution from sequence features. We show that BRIE yields reproducible estimates of exon inclusion ratios in single cells and provides an effective tool for differential isoform quantification between scRNA-seq data sets. BRIE, therefore, expands the scope of scRNA-seq experiments to probe the stochasticity of RNA processing.

摘要

单细胞RNA测序(scRNA-seq)提供了对转录随机性的全面测量,但该技术的局限性阻碍了其在剖析RNA加工事件(如剪接)变异性方面的应用。在这里,我们提出了BRIE(用于异构体估计的贝叶斯回归),这是一种贝叶斯层次模型,通过从序列特征中学习信息先验分布来解决这些问题。我们表明,BRIE能在单细胞中产生可重复的外显子包含率估计值,并为scRNA-seq数据集之间的异构体差异定量提供了一个有效工具。因此,BRIE扩展了scRNA-seq实验的范围,以探究RNA加工的随机性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14c/5488362/0168b516ac55/13059_2017_1248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验