MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
Nat Commun. 2024 Mar 9;15(1):2164. doi: 10.1038/s41467-024-46480-9.
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
RNA 剪接塑造了基础各种生理和疾病过程的基因调控程序。在这里,我们提出了 SCASL(基于替代剪接景观的单细胞聚类)方法,用于用单细胞 RNA-seq 数据探究 RNA 剪接的异质性。SCASL 解决了单细胞 RNA 剪接中数据覆盖存在偏差和稀疏的问题,并为细胞身份分类提供了新的方案。以之前发表的数据集为例,SCASL 鉴定了新的细胞簇,表明三阴性乳腺癌中存在潜在的癌前和早期肿瘤阶段,说明了胚胎肝脏发育的细胞谱系,并提供了具有功能和生理相关性的高度异质肿瘤相关 CD4 和 CD8 T 细胞的精细簇。这些发现中的大多数通过基于单细胞基因表达数据的常规细胞聚类是不易获得的。我们的研究表明了 SCASL 在揭示内在的 RNA 剪接异质性以及生成对复杂组织中动态和功能细胞景观的生物学见解方面的潜力。