Suppr超能文献

一种具有信号活性的视紫红质 - G蛋白复合物的分离及结构 - 功能表征

Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

作者信息

Gao Yang, Westfield Gerwin, Erickson Jon W, Cerione Richard A, Skiniotis Georgios, Ramachandran Sekar

机构信息

From the Department of Chemistry and Chemical Biology, Baker Laboratory, and Ithaca, New York 14853.

Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109.

出版信息

J Biol Chem. 2017 Aug 25;292(34):14280-14289. doi: 10.1074/jbc.M117.797100. Epub 2017 Jun 27.

Abstract

The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G). This results in the dissociation of G into its component α-GTP and βγ subunit complex. Structural information for the Rho*-G complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G*) comprising a Gα/Gα chimera (α*) and βγ The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β-adrenergic receptor-G complex, including a flexible α* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex.

摘要

视觉光转导级联是一种典型的G蛋白偶联受体(GPCR)信号系统,其中光激活的视紫红质(Rho*)作为GPCR,催化异源三聚体G蛋白转导素(G)上的GDP与GTP交换。这导致G解离为其组成部分α-GTP和βγ亚基复合物。Rho*-G复合物的结构信息对于理解视觉光转导的分子机制至关重要。此外,它将阐明GPCR如何选择性地偶联并激活其G蛋白信号伴侣。在此,我们报道了Rho与包含Gα/Gα嵌合体(α)和βγ的异源三聚体(G*)之间稳定的去污剂增溶复合物的制备。该复合物在光激活后在天然视杆外段膜上形成,用月桂基麦芽糖新戊二醇增溶,并通过亲和色谱和尺寸排阻色谱相结合的方法纯化。我们发现该复合物具有完全功能,并且Rho与Gα的化学计量比为1:1。根据小角X射线散射数据计算出复合物的分子量,与由一个Rho和一个G组成的模型高度吻合。通过负染电子显微镜观察该复合物,发现其结构类似于β-肾上腺素能受体-G复合物,包括一个柔性的α*螺旋结构域。纯化复合物的稳定性和高产率应有助于进一步努力获得这种重要信号复合物的高分辨率结构。

相似文献

1
Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
J Biol Chem. 2017 Aug 25;292(34):14280-14289. doi: 10.1074/jbc.M117.797100. Epub 2017 Jun 27.
2
Shining a light on GPCR complexes.
J Biol Chem. 2017 Aug 25;292(34):14290-14291. doi: 10.1074/jbc.H117.797100.
4
Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
Mol Cell. 2019 Aug 22;75(4):781-790.e3. doi: 10.1016/j.molcel.2019.06.007. Epub 2019 Jul 9.
5
Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
J Biol Chem. 2017 Sep 15;292(37):15321-15328. doi: 10.1074/jbc.M117.804880. Epub 2017 Jul 26.
6
The rhodopsin-transducin complex houses two distinct rhodopsin molecules.
J Struct Biol. 2013 May;182(2):164-72. doi: 10.1016/j.jsb.2013.02.014. Epub 2013 Feb 28.
7
Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein.
PLoS One. 2014 Jun 30;9(6):e98714. doi: 10.1371/journal.pone.0098714. eCollection 2014.
9
Different properties of the native and reconstituted heterotrimeric G protein transducin.
Biochemistry. 2008 Nov 25;47(47):12409-19. doi: 10.1021/bi8015444.
10
A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor.
J Biol Chem. 2005 Oct 21;280(42):35696-703. doi: 10.1074/jbc.M504935200. Epub 2005 Aug 15.

引用本文的文献

1
A rapid, tag-free way to purify functional GPCRs.
J Biol Chem. 2024 Jan;300(1):105558. doi: 10.1016/j.jbc.2023.105558. Epub 2023 Dec 12.
2
Disrupting GPCR Complexes with Smart Drug-like Peptides.
Pharmaceutics. 2022 Jan 11;14(1):161. doi: 10.3390/pharmaceutics14010161.
3
Structural insights into emergent signaling modes of G protein-coupled receptors.
J Biol Chem. 2020 Aug 14;295(33):11626-11642. doi: 10.1074/jbc.REV120.009348. Epub 2020 Jun 22.
4
Development of "Plug and Play" Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM.
Structure. 2019 Dec 3;27(12):1862-1874.e7. doi: 10.1016/j.str.2019.10.004. Epub 2019 Oct 25.
5
Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
Mol Cell. 2019 Aug 22;75(4):781-790.e3. doi: 10.1016/j.molcel.2019.06.007. Epub 2019 Jul 9.
7
Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping.
Nat Protoc. 2018 Jun;13(6):1403-1428. doi: 10.1038/nprot.2018.037. Epub 2018 May 24.
8
A Rhodopsin-Like Gene May Be Associated With the Light-Sensitivity of Adult Pacific Oyster .
Front Physiol. 2018 Mar 19;9:221. doi: 10.3389/fphys.2018.00221. eCollection 2018.
9
Structure and dynamics of GPCR signaling complexes.
Nat Struct Mol Biol. 2018 Jan;25(1):4-12. doi: 10.1038/s41594-017-0011-7. Epub 2018 Jan 8.
10
Low-Resolution Structure of Detergent-Solubilized Membrane Proteins from Small-Angle Scattering Data.
Biophys J. 2017 Dec 5;113(11):2373-2382. doi: 10.1016/j.bpj.2017.10.003.

本文引用的文献

1
Phase-plate cryo-EM structure of a class B GPCR-G-protein complex.
Nature. 2017 Jun 1;546(7656):118-123. doi: 10.1038/nature22327. Epub 2017 Apr 24.
2
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
3
2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy.
Methods Mol Biol. 2015;1335:29-38. doi: 10.1007/978-1-4939-2914-6_3.
4
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.
5
Memprot: a program to model the detergent corona around a membrane protein based on SEC-SAXS data.
Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):86-93. doi: 10.1107/S1399004714016678.
6
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
7
Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein.
PLoS One. 2014 Jun 30;9(6):e98714. doi: 10.1371/journal.pone.0098714. eCollection 2014.
8
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
Cell Signal. 2013 Nov;25(11):2155-62. doi: 10.1016/j.cellsig.2013.07.009. Epub 2013 Jul 17.
9
Accurate assessment of mass, models and resolution by small-angle scattering.
Nature. 2013 Apr 25;496(7446):477-81. doi: 10.1038/nature12070.
10
The rhodopsin-transducin complex houses two distinct rhodopsin molecules.
J Struct Biol. 2013 May;182(2):164-72. doi: 10.1016/j.jsb.2013.02.014. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验