Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, India 560012.
Nanoscale. 2017 Jul 13;9(27):9411-9420. doi: 10.1039/c7nr01644a.
Herein, a novel heterostructure was fabricated by combining electrochemically and optically active materials to achieve a high capacitive response of 896 F g at 5 A g. A network of ZnCoO nanorods (NRs) was directly grown on a three-dimensional matrix of H : ZnO NRs (ZnCoO/H : ZnO NRs) that offered synergistic advantages by providing an optimum ion/charge transportation path, large electrochemically active surface area, and stable capacitive response during the electrolytic process. Furthermore, the fabricated solid-state asymmetric supercapacitor ZnCoO/H : ZnO NRs//activated carbon induced a large potential window of 1.5 V that offered excellent energy and power densities. In addition, optically active ZnCoO/H : ZnO NRs were also used for the conversion of optical energy over a broad wavelength range; thus, the as-fabricated asymmetric solid-state supercapacitor could easily provide the required power for the operation of a photodetector. Therefore, the unique heterostructure of ZnCoO/H : ZnO NRs not only presents excellent capacitive response but also demonstrates great potential for energy conversion.
在此,通过将电化学和光学活性材料结合起来构建了一种新型异质结构,实现了在 5 A g 下 896 F g 的高电容响应。ZnCoO 纳米棒 (NRs) 的网络直接生长在三维 H:ZnO NRs 基质上(ZnCoO/H:ZnO NRs),通过提供最佳的离子/电荷传输路径、大的电化学活性表面积和稳定的电容响应,提供了协同优势在电解过程中。此外,所制备的固态不对称超级电容器 ZnCoO/H:ZnO NRs//活性炭诱导了 1.5 V 的大电势窗口,提供了优异的能量和功率密度。此外,光学活性 ZnCoO/H:ZnO NRs 也用于在宽波长范围内转换光学能量;因此,所制造的不对称固态超级电容器可以轻松为光电探测器的运行提供所需的功率。因此,ZnCoO/H:ZnO NRs 的独特异质结构不仅表现出优异的电容响应,而且还展示了在能量转换方面的巨大潜力。