Dept. of Materials Chemistry and Engineering, Konkuk University, 120 Neungdongro Gwangjingu, Seoul, Republic of Korea.
Nanoscale. 2017 Jul 13;9(27):9396-9403. doi: 10.1039/c7nr02674a.
Despite the previous reports on the fabrication of CHNHPbICl films via sequential deposition, the positioning and formation of PbI in MAPbICl perovskite films made from the seed layer containing PbI and PbCl in different ratios have not yet been addressed. In this study, the PbI content in a perovskite absorber layer is controlled by changing the PbCl ratio in a PbICl seed layer. The addition of PbCl in the seed layer facilitates PbI generation and affects the morphology of the perovskite film. By integrating a perovskite absorber via the PbICl seed-layer into a solar cell, we investigated the effects of the correlation between the chlorine and PbI contents on the device performance through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy. Elemental depth profiling analyses confirm that not only was the formed PbI preferentially located near the metal-oxide layer, but residual chlorine was adsorbed at the TiO layer. Our findings demonstrate that the geometric features of the formed PbI affected the perovskite solar cells according to the chlorine content, likely because of the elemental gradient induced by annealing. The PbICl-derived planar-heterojunction perovskite solar cells exhibited maximum power-conversion efficiencies of 17.56% at reverse scan and 17.21% at forward scan, suppressed current density-voltage hysteresis, and good performance distributions.
尽管先前有报道称可以通过顺序沉积来制备 CHNHPbICl 薄膜,但尚未解决由含有不同比例 PbI 和 PbCl 的种子层制备的 MAPbICl 钙钛矿薄膜中 PbI 的定位和形成问题。在本研究中,通过改变 PbICl 种子层中的 PbCl 比例来控制钙钛矿吸收层中的 PbI 含量。种子层中 PbCl 的添加促进了 PbI 的生成,并影响了钙钛矿薄膜的形态。通过将通过 PbICl 种子层集成的钙钛矿吸收体纳入太阳能电池中,我们通过强度调制光电流谱和强度调制光电压谱研究了氯和 PbI 含量之间的相关性对器件性能的影响。元素深度剖析分析证实,形成的 PbI 不仅优先位于金属氧化物层附近,而且残留的氯吸附在 TiO 层上。我们的研究结果表明,形成的 PbI 的几何形状根据氯含量影响钙钛矿太阳能电池,这可能是由于退火引起的元素梯度所致。基于 PbICl 的平面异质结钙钛矿太阳能电池在反向扫描时表现出 17.56%的最大功率转换效率,在正向扫描时表现出 17.21%的最大功率转换效率,抑制了电流密度-电压滞后,并具有良好的性能分布。