Suppr超能文献

使用双聚类方法从单细胞RNA测序数据中识别细胞亚群及其遗传驱动因素。

Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.

作者信息

Shi Funan, Huang Haiyan

机构信息

Department of Statistics, University of California , Berkeley, California.

出版信息

J Comput Biol. 2017 Jul;24(7):663-674. doi: 10.1089/cmb.2017.0049.

Abstract

Single-cell RNA-Seq (scRNA-Seq) has attracted much attention recently because it allows unprecedented resolution into cellular activity; the technology, therefore, has been widely applied in studying cell heterogeneity such as the heterogeneity among embryonic cells at varied developmental stages or cells of different cancer types or subtypes. A pertinent question in such analyses is to identify cell subpopulations as well as their associated genetic drivers. Consequently, a multitude of approaches have been developed for clustering or biclustering analysis of scRNA-Seq data. In this article, we present a fast and simple iterative biclustering approach called "BiSNN-Walk" based on the existing SNN-Cliq algorithm. One of BiSNN-Walk's differentiating features is that it returns a ranked list of clusters, which may serve as an indicator of a cluster's reliability. Another important feature is that BiSNN-Walk ranks genes in a gene cluster according to their level of affiliation to the associated cell cluster, making the result more biologically interpretable. We also introduce an entropy-based measure for choosing a highly clusterable similarity matrix as our starting point among a wide selection to facilitate the efficient operation of our algorithm. We applied BiSNN-Walk to three large scRNA-Seq studies, where we demonstrated that BiSNN-Walk was able to retain and sometimes improve the cell clustering ability of SNN-Cliq. We were able to obtain biologically sensible gene clusters in terms of GO term enrichment. In addition, we saw that there was significant overlap in top characteristic genes for clusters corresponding to similar cell states, further demonstrating the fidelity of our gene clusters.

摘要

单细胞RNA测序(scRNA-Seq)最近备受关注,因为它能以前所未有的分辨率揭示细胞活性;因此,该技术已广泛应用于研究细胞异质性,如不同发育阶段胚胎细胞之间的异质性,或不同癌症类型或亚型的细胞之间的异质性。此类分析中的一个相关问题是识别细胞亚群及其相关的遗传驱动因素。因此,已经开发了多种方法用于scRNA-Seq数据的聚类或双聚类分析。在本文中,我们基于现有的SNN-Cliq算法,提出了一种快速简单的迭代双聚类方法,称为“BiSNN-Walk”。BiSNN-Walk的一个显著特征是它返回一个聚类的排序列表,这可以作为聚类可靠性的一个指标。另一个重要特征是,BiSNN-Walk根据基因与相关细胞聚类的隶属程度对基因聚类中的基因进行排序,使结果在生物学上更具可解释性。我们还引入了一种基于熵的度量方法,用于在众多选择中选择一个高度可聚类的相似性矩阵作为我们算法的起点,以促进算法的高效运行。我们将BiSNN-Walk应用于三项大型scRNA-Seq研究,在这些研究中我们证明了BiSNN-Walk能够保留甚至有时提高SNN-Cliq的细胞聚类能力。从基因本体(GO)术语富集方面,我们能够获得具有生物学意义的基因聚类。此外,我们发现对应于相似细胞状态的聚类的顶级特征基因存在显著重叠,进一步证明了我们基因聚类的准确性。

相似文献

3
A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering.基于基因排序的单细胞相似性评估和聚类方法。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):431-442. doi: 10.1109/TCBB.2019.2931582. Epub 2021 Apr 6.
4
Data Analysis in Single-Cell Transcriptome Sequencing.单细胞转录组测序中的数据分析
Methods Mol Biol. 2018;1754:311-326. doi: 10.1007/978-1-4939-7717-8_18.
5
Single-cell RNA-seq clustering: datasets, models, and algorithms.单细胞 RNA-seq 聚类:数据集、模型和算法。
RNA Biol. 2020 Jun;17(6):765-783. doi: 10.1080/15476286.2020.1728961. Epub 2020 Mar 1.
6
SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.SINCERA:一种用于单细胞RNA测序分析的流程
PLoS Comput Biol. 2015 Nov 24;11(11):e1004575. doi: 10.1371/journal.pcbi.1004575. eCollection 2015 Nov.
7
mbkmeans: Fast clustering for single cell data using mini-batch k-means.mbkmeans:使用小批量k均值算法对单细胞数据进行快速聚类。
PLoS Comput Biol. 2021 Jan 26;17(1):e1008625. doi: 10.1371/journal.pcbi.1008625. eCollection 2021 Jan.

引用本文的文献

本文引用的文献

5
Single-cell sequencing.单细胞测序
Nat Methods. 2014 Jan;11(1):18. doi: 10.1038/nmeth.2771.
7
Quantitative assessment of single-cell RNA-sequencing methods.单细胞 RNA 测序方法的定量评估。
Nat Methods. 2014 Jan;11(1):41-6. doi: 10.1038/nmeth.2694. Epub 2013 Oct 20.
9
Human housekeeping genes, revisited.人类管家基因,再探。
Trends Genet. 2013 Oct;29(10):569-74. doi: 10.1016/j.tig.2013.05.010. Epub 2013 Jun 27.
10
STAR: ultrafast universal RNA-seq aligner.STAR:超快通用 RNA-seq 对齐工具。
Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验