Suppr超能文献

一种因果算法,用于指导儿童和青少年自身免疫性疾病所致紧张症的诊断和治疗。

A causality algorithm to guide diagnosis and treatment of catatonia due to autoimmune conditions in children and adolescents.

机构信息

Department of Child and Adolescent Psychiatry, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, 75013 Paris, France; Department of Child and Adolescent Psychiatry, Université de Rouen, Hôpital Charles Nicolle, 1 rue de Germont, 76000 Rouen, France.

Department of Child and Adolescent Psychiatry, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.

出版信息

Schizophr Res. 2018 Oct;200:68-76. doi: 10.1016/j.schres.2017.06.036. Epub 2017 Jun 26.

Abstract

OBJECTIVES

Pediatric catatonia is a rare and life-threatening syndrome. Around 20% of juvenile catatonia is associated with organic condition (Consoli et al., 2012). Autoimmune conditions represent a diagnostic and therapeutic challenge since specific antibodies can be missed. To facilitate decision making, we recently formulated a causality assessment score (CAUS) using a stepwise approach and an immunosuppressive therapeutic challenge (Ferrafiat et al., 2016). Our objectives were to validate retrospectively CAUS and to define its threshold for an accurate distinction between organic catatonia and non-organic catatonia, and specifically between autoimmune catatonia and non-organic catatonia.

METHOD

To obtain a sufficient number of cases with organic catatonia, we pooled two samples (N=104) - one from a child psychiatry center, the other from neuro-pediatrics center - expert in catatonia and autoimmune conditions. Organic conditions were diagnosed using a multidisciplinary approach and numerous paraclinical investigations. Given the binary classification needs, we used receiver operating characteristic (ROC) analysis (Peacock and Peacock, 2010) to calculate the best classification threshold.

RESULTS

The cohort included 67 cases of non-organic catatonia and 37 cases of organic catatonia. ROC analysis showed that the CAUS performance in discriminating both organic catatonia vs. non-organic catatonia, and autoimmune catatonia vs. non-organic catatonia was excellent (Area Under the Curve=0.99). In both analyses, for a CAUS threshold≥5, accuracy equaled to 0.96.

CONCLUSION

Regarding juvenile catatonia, the use of the CAUS score algorithm combining a therapeutic challenge and a threshold≥5 may help to diagnose and treat autoimmune conditions even without formal identification of auto-antibodies.

摘要

目的

小儿紧张症是一种罕见且危及生命的综合征。约 20%的青少年紧张症与器质性疾病有关(Consoli 等人,2012 年)。自身免疫性疾病是诊断和治疗的挑战,因为可能会错过特定的抗体。为了便于决策,我们最近使用逐步方法和免疫抑制治疗挑战制定了因果评估评分(CAUS)(Ferrafiat 等人,2016 年)。我们的目的是回顾性验证 CAUS,并确定其区分器质性紧张症和非器质性紧张症、特别是自身免疫性紧张症和非器质性紧张症的准确阈值。

方法

为了获得足够数量的器质性紧张症病例,我们汇集了两个样本(N=104)-一个来自儿童精神病中心,另一个来自神经儿科学中心-擅长紧张症和自身免疫性疾病。器质性疾病采用多学科方法和多项临床前检查进行诊断。鉴于二分类的需要,我们使用接收者操作特性(ROC)分析(Peacock 和 Peacock,2010 年)计算最佳分类阈值。

结果

该队列包括 67 例非器质性紧张症和 37 例器质性紧张症。ROC 分析表明,CAUS 在区分器质性紧张症与非器质性紧张症以及自身免疫性紧张症与非器质性紧张症方面的性能非常出色(曲线下面积=0.99)。在这两种分析中,对于 CAUS 阈值≥5,准确率等于 0.96。

结论

对于青少年紧张症,使用 CAUS 评分算法结合治疗挑战和阈值≥5 可能有助于诊断和治疗自身免疫性疾病,即使没有正式确定自身抗体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验