Suppr超能文献

用于阐明糖尿病病理生物学的微阵列数据集的系统级荟萃分析。

System Level Meta-analysis of Microarray Datasets for Elucidation of Diabetes Mellitus Pathobiology.

作者信息

Saxena Aditya, Sachin Kumar, Bhatia Ashok Kumar

机构信息

Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura (U.P.) India.

Uttarakhand Technical University, Dehradun (U.K.) India.

出版信息

Curr Genomics. 2017 Jun;18(3):298-304. doi: 10.2174/1389202918666170105093339.

Abstract

BACKGROUND

Type 2 diabetes (T2D) is a common multi-factorial disease that is primarily ac-counted to ineffective insulin action in lowering blood glucose level and later escalates to impaired insu-lin secretion by pancreatic β cells. Deregulation in insulin signaling to its target organs is attributed to this disease phenotype. Various genome-wide microarray studies from multiple insulin responsive tis-sues have been conducted in past but due to inherent noise in microarray data and heterogeneity in dis-ease etiology; reproduction of prioritized pathways/genes is very low across various studies.

OBJECTIVE

In this study, we aim to identify consensus signaling and metabolic pathways through system level meta-analysis of multiple expression-sets to elucidate T2D pathobiology.

METHOD

We used 'R', an open source statistical environment, which is routinely used for Microarray data analysis particularly using special sets of packages available at Bioconductor. We primarily focused on gene-set analysis methods to elucidate various aspects of T2D.

RESULT

Literature-based evidences have shown the success of our approach in exploring various known aspects of diabetes pathophysiology.

CONCLUSION

Our study stressed the need to develop novel bioinformatics workflows to advance our understanding further in insulin signaling.

摘要

背景

2型糖尿病(T2D)是一种常见的多因素疾病,主要归因于胰岛素在降低血糖水平方面作用无效,随后会发展为胰腺β细胞胰岛素分泌受损。胰岛素向其靶器官的信号传导失调是这种疾病表型的原因。过去已经对多个胰岛素反应组织进行了各种全基因组微阵列研究,但由于微阵列数据中存在固有噪声以及疾病病因的异质性,在各种研究中优先排序的途径/基因的重现性非常低。

目的

在本研究中,我们旨在通过对多个表达集进行系统水平的荟萃分析来确定共识信号传导和代谢途径,以阐明T2D的病理生物学。

方法

我们使用了“R”,一种开源统计环境,它通常用于微阵列数据分析,特别是使用生物导体提供的特殊软件包集。我们主要专注于基因集分析方法,以阐明T2D的各个方面。

结果

基于文献的证据表明我们的方法在探索糖尿病病理生理学的各种已知方面是成功的。

结论

我们的研究强调需要开发新的生物信息学工作流程,以进一步推进我们对胰岛素信号传导的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf4/5476948/b51535e3702c/CG-18-298_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验