Tsytsarev Vassiliy, Arakawa Hiroyuki, Zhao Shuxin, Chédotal Alain, Erzurumlu Reha S
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and.
Centre de Recherche Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S968, 75012 Paris, France.
J Neurosci. 2017 Jul 26;37(30):7209-7218. doi: 10.1523/JNEUROSCI.0598-17.2017. Epub 2017 Jun 29.
The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant () mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex. The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal rodents. Here, we studied a novel mutant mouse line, in which the projections from the brainstem to the thalamus are disrupted. This led to formation of bilateral whisker maps in both the thalamus and the cortex. The two whisker maps crowd in a space normally devoted to the contralateral map alone and in a nonoverlapping fashion. Stimulation of the whiskers on either side activates the corresponding region of the map. Mice with bilateral whisker maps perform well in general sensorimotor tasks but show poor performance in specific tests that require whisker-dependent tactile discrimination. These observations indicate that contralateral, instead of bilateral, representation of the sensory space plays a critical role in acuity and fine discrimination during somesthesis.
触须系统是一种重要的感觉器官,在小鼠大脑中具有广泛的神经表征。三叉神经(PrV)同侧主感觉核中的模式化神经模块(小柱)与触须相对应。PrV小柱神经元的轴突穿过中线,将与触须相关的模式传递给丘脑对侧腹后内侧核,随后传递到皮层。通过这种方式,在对侧丘脑和皮层中称为类桶和桶的特定神经模块代表每根触须。在条件性Robo3突变体()小鼠品系中,PrV轴突的部分中线交叉导致腹后内侧以及桶状皮层中形成双侧触须图谱。我们使用电压敏感染料光学成像以及体感和运动行为测试来表征丘脑皮质系统中双面图谱的后果。电压敏感染料光学成像证实了桶状皮层中功能性的双侧触须表征以及特定触须同侧和对侧刺激后不同皮质位点的激活。突变动物在感觉运动测试中与对照动物相当。然而,它们在所有依赖触须或与触须相关的测试中都表现出明显的缺陷,包括Y迷宫探索、水平表面接近、过桥、跨越间隙、纹理辨别、在水中漂浮和触须偏侧性。我们的结果表明,沿丘脑皮质系统的双面图谱没有提供功能优势。相反,它们会导致损伤,可能是由于与触须相关的模块尺寸较小以及同侧和对侧触须表征在同一丘脑和皮层中的干扰。触须感觉系统在小鼠和其他夜行性啮齿动物的探索行为中起着至关重要的作用。在这里,我们研究了一种新型突变小鼠品系,其中从脑干到丘脑的投射被破坏。这导致丘脑和皮层中都形成了双侧触须图谱。这两个触须图谱以非重叠的方式挤在一个通常仅用于对侧图谱的空间中。刺激任一侧的触须会激活图谱的相应区域。具有双侧触须图谱的小鼠在一般感觉运动任务中表现良好,但在需要依赖触须的触觉辨别的特定测试中表现不佳。这些观察结果表明,感觉空间的对侧而非双侧表征在本体感觉的敏锐度和精细辨别中起着关键作用。