Fidler Trevor P, Middleton Elizabeth A, Rowley Jesse W, Boudreau Luc H, Campbell Robert A, Souvenir Rhonda, Funari Trevor, Tessandier Nicolas, Boilard Eric, Weyrich Andrew S, Abel E Dale
From the Department of Pharmacology and Toxicology (T.P.F.), and Program in Molecular Medicine (T.P.F., E.A.M., J.W.R., R.A.C., A.S.W., E.D.A.), University of Utah, Salt Lake City; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City (T.P.F., R.S., T.F., E.D.A.); and Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec and Faculté de Médecine de l'Université Laval, Quebec City, Canada (L.H.B., N.T., E.B.).
Arterioscler Thromb Vasc Biol. 2017 Sep;37(9):1628-1639. doi: 10.1161/ATVBAHA.117.309184. Epub 2017 Jun 29.
On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets.
Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis.
GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions.
激活后,血小板会增加葡萄糖摄取、糖酵解和葡萄糖氧化,并消耗储存的糖原。葡萄糖代谢与血小板功能之间的这种关联尚未得到充分理解,而关于葡萄糖代谢在体内血小板功能中的作用则知之更少。葡萄糖进入细胞必须通过葡萄糖转运蛋白进行运输。在此,我们评估葡萄糖转运蛋白3(GLUT3)对血小板功能的贡献,以更好地理解血小板中的葡萄糖代谢。
通过将携带GLUT3 floxed等位基因的小鼠与PF4(血小板因子4)驱动的Cre重组酶杂交,产生血小板特异性GLUT3基因敲除小鼠。在血小板中,GLUT3主要定位于α颗粒膜上,在基础条件下促进葡萄糖摄取到α颗粒中以供糖酵解使用。激活后,血小板脱颗粒,GLUT3转位至质膜,这负责激活介导的葡萄糖摄取增加。在体内,血小板中GLUT3的缺失增加了肺栓塞胶原/肾上腺素模型中的存活率,并且在自身免疫性炎症疾病的K/BxN模型中,血小板特异性GLUT3基因敲除小鼠的疾病进展减缓。从机制上讲,GLUT3的缺失降低了血小板脱颗粒、铺展和凝块收缩。α颗粒脱颗粒减少部分归因于GLUT3增强胞吐作用的能力受损。
GLUT3介导的血小板葡萄糖利用和糖原分解促进α颗粒释放、血小板激活及激活后功能。