Suppr超能文献

基于数字微镜器件的同心圆扫描检眼镜

Digital micromirror device based ophthalmoscope with concentric circle scanning.

作者信息

Damodaran Mathi, Vienola Kari V, Braaf Boy, Vermeer Koenraad A, de Boer Johannes F

机构信息

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

Rotterdam Ophthalmic Institute, Schiedamse Vest 160D, 3011 BH Rotterdam, The Netherlands.

出版信息

Biomed Opt Express. 2017 Apr 28;8(5):2766-2780. doi: 10.1364/BOE.8.002766. eCollection 2017 May 1.

Abstract

Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.

摘要

使用基于数字微镜器件且具备810 nm照明的新型扫描光检眼镜进行视网膜成像演示。同心圆用作扫描模式,便于人类受试者注视以进行成像。系统中采用环形照明以减少角膜反射引起的背景,从而提高信噪比。与圆形照明孔径相比,使用环形照明孔径时信噪比提高了1.9倍,成像速度提高了5倍,且与我们之前的系统相比具有更好的信噪比。我们通过以7 Hz的速度、最大20°(直径)视野对两名受试者进行免散瞳成像来测试系统的成像性能。图像受散粒噪声限制,清晰显示出视网膜的各种高对比度解剖特征。

相似文献

1
Digital micromirror device based ophthalmoscope with concentric circle scanning.
Biomed Opt Express. 2017 Apr 28;8(5):2766-2780. doi: 10.1364/BOE.8.002766. eCollection 2017 May 1.
2
retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope.
Biomed Opt Express. 2018 Jan 11;9(2):591-602. doi: 10.1364/BOE.9.000591. eCollection 2018 Feb 1.
3
Parallel line scanning ophthalmoscope for retinal imaging.
Opt Lett. 2015 Nov 15;40(22):5335-8. doi: 10.1364/OL.40.005335.
5
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.
Opt Express. 2015 Oct 19;23(21):26999-7010. doi: 10.1364/OE.23.026999.
6
Non-mydriatic confocal retinal imaging using a digital light projector.
Proc SPIE Int Soc Opt Eng. 2015 Feb 7;9376. doi: 10.1117/12.2077704. Epub 2015 Mar 10.
7
Adaptive optics parallel near-confocal scanning ophthalmoscopy.
Opt Lett. 2016 Aug 15;41(16):3852-5. doi: 10.1364/OL.41.003852.
8
High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmoscope.
Biomed Opt Express. 2024 Feb 22;15(3):1815-1830. doi: 10.1364/BOE.507449. eCollection 2024 Mar 1.
10
In vivo dark-field imaging of the retinal pigment epithelium cell mosaic.
Biomed Opt Express. 2013 Aug 23;4(9):1710-23. doi: 10.1364/BOE.4.001710. eCollection 2013.

引用本文的文献

1
High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmoscope.
Biomed Opt Express. 2024 Feb 22;15(3):1815-1830. doi: 10.1364/BOE.507449. eCollection 2024 Mar 1.
3
High-resolution, ultrafast, wide-field retinal eye-tracking for enhanced quantification of fixational and saccadic motion.
Biomed Opt Express. 2020 May 19;11(6):3164-3180. doi: 10.1364/BOE.392849. eCollection 2020 Jun 1.
4
retinal imaging for fixational eye motion detection using a high-speed digital micromirror device (DMD)-based ophthalmoscope.
Biomed Opt Express. 2018 Jan 11;9(2):591-602. doi: 10.1364/BOE.9.000591. eCollection 2018 Feb 1.

本文引用的文献

1
Non-mydriatic confocal retinal imaging using a digital light projector.
Proc SPIE Int Soc Opt Eng. 2015 Feb 7;9376. doi: 10.1117/12.2077704. Epub 2015 Mar 10.
2
Studying different illumination patterns for resolution improvement in fluorescence microscopy.
Opt Express. 2015 Nov 30;23(24):31367-83. doi: 10.1364/OE.23.031367.
3
Parallel line scanning ophthalmoscope for retinal imaging.
Opt Lett. 2015 Nov 15;40(22):5335-8. doi: 10.1364/OL.40.005335.
4
High contrast ratio and compact-sized prism for DLP projection system.
Opt Express. 2014 Jul 14;22(14):17016-29. doi: 10.1364/OE.22.017016.
5
Retinal oximetry with a scanning laser ophthalmoscope.
Invest Ophthalmol Vis Sci. 2014 Apr 15;55(5):3120-6. doi: 10.1167/iovs.13-13255.
6
Real-time eye motion compensation for OCT imaging with tracking SLO.
Biomed Opt Express. 2012 Nov 1;3(11):2950-63. doi: 10.1364/BOE.3.002950. Epub 2012 Oct 24.
7
High-speed, image-based eye tracking with a scanning laser ophthalmoscope.
Biomed Opt Express. 2012 Oct 1;3(10):2611-22. doi: 10.1364/BOE.3.002611. Epub 2012 Sep 19.
8
Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.
PLoS One. 2012;7(8):e43942. doi: 10.1371/journal.pone.0043942. Epub 2012 Aug 24.
10
Reflectometry with a scanning laser ophthalmoscope.
Appl Opt. 1992 Jul 1;31(19):3697-710. doi: 10.1364/AO.31.003697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验