Suppr超能文献

微生物酶DapE在其第二个金属结合位点的金属离子混杂性

Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.

作者信息

Paul Atanuka, Mishra Sabyashachi

机构信息

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.

Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, India.

出版信息

J Biol Inorg Chem. 2021 Aug;26(5):569-582. doi: 10.1007/s00775-021-01875-7. Epub 2021 Jul 9.

Abstract

Metalloenzymes are ubiquitous in nature catalyzing a number of crucial biochemical processes in animal and plant kingdoms. For better adaptation to the relative abundance of different metal ions in different cellular fluids, many of these enzymes exhibit metal promiscuity. The microbial enzyme DapE, an essential enzyme for bacterial growth and survival and a potentially safe target for antibiotics, continues to show enzyme activity when the two zinc ions in its active site are replaced by other transition metal ions. The effect of metal-ion substitution at the second metal-binding site of DapE on its substrate affinity and catalytic efficiency is investigated by QM/MM treatment of the enzyme-substrate complex, by modelling the enzyme with Mn(II), Co(II), Ni(II), or Cu(II) ion in place of Zn(II) at its second metal-binding site, while retaining Zn(II) ion at the first metal-binding site. On the basis of substrate binding energy and activation energy barrier for the chemical catalysis, it is found that Zn-Mn DapE shows poor binding affinity as well as inefficient chemical catalysis. Although Zn-Cu and Zn-Ni DapEs show activation energy barriers comparable to that of wild-type Zn-Zn DapE, their weaker substrate affinity renders these mixed-metal enzymes less efficient. On the other hand, Zn-Co DapE is found to outperform the naturally occurring Zn-Zn DapE, both in terms of substrate affinity and chemical catalysis. The observed metal promiscuity may have played an important role in the survival of bacteria even in those cellular media where Zn ions are in limited supply. Metal nonspecificity in the catalysis of DapE enzyme allows bacteria to thrive in different cellular media.

摘要

金属酶在自然界中广泛存在,催化动植物界许多关键的生化过程。为了更好地适应不同细胞液中不同金属离子的相对丰度,这些酶中的许多都表现出金属选择性。微生物酶DapE是细菌生长和存活所必需的酶,也是抗生素潜在的安全作用靶点,当其活性位点的两个锌离子被其他过渡金属离子取代时,它仍能保持酶活性。通过对酶-底物复合物进行量子力学/分子力学(QM/MM)处理,在其第二个金属结合位点用Mn(II)、Co(II)、Ni(II)或Cu(II)离子取代Zn(II)来模拟该酶,同时在第一个金属结合位点保留Zn(II)离子,研究了DapE第二个金属结合位点的金属离子取代对其底物亲和力和催化效率的影响。基于化学催化的底物结合能和活化能垒,发现Zn-Mn DapE表现出较差的结合亲和力以及低效的化学催化。虽然Zn-Cu和Zn-Ni DapE的活化能垒与野生型Zn-Zn DapE相当,但它们较弱的底物亲和力使这些混合金属酶的效率较低。另一方面,发现Zn-Co DapE在底物亲和力和化学催化方面均优于天然存在的Zn-Zn DapE。观察到的金属选择性可能在细菌的生存中发挥了重要作用,即使在那些锌离子供应有限的细胞培养基中也是如此。DapE酶催化过程中的金属非特异性使细菌能够在不同的细胞培养基中茁壮成长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验