Suppr超能文献

利用可见-近红外瞬态吸收光谱对从甲基碘化铅向空穴传输材料H101和介孔TiO2的超快电荷载流子注入进行定量分析。

Quantifying ultrafast charge carrier injection from methylammonium lead iodide into the hole-transport material H101 and mesoporous TiO using Vis-NIR transient absorption.

作者信息

Klein Johannes R, Scholz Mirko, Oum Kawon, Lenzer Thomas

机构信息

Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.

出版信息

Phys Chem Chem Phys. 2017 Jul 21;19(27):17952-17959. doi: 10.1039/c7cp02459b. Epub 2017 Jun 30.

Abstract

Organic-inorganic hybrid lead halide perovskites already reach very high power conversion efficiencies above 22% on architectures employing mesoporous TiO, but the carrier injection processes across the different interfaces are still not fully understood. Here we use ultrafast broadband transient absorption spectroscopy to determine time constants and yields for hole and electron injection. We show that hole transfer from the perovskite valence band (VB) to the hole-transport material (HTM) H101 at the perovskite/HTM interface occurs in less than 500 fs, but is limited by imperfections of the contact layer and poor infiltration of the HTM into the mesoporous structure. Electron injection from the perovskite conduction band (CB) into the CB of mesoporous TiO is only a small channel (25%). Electron transport inside mesoporous MAPI/TiO architectures therefore mainly occurs via the perovskite. We also show that electron injection from H101 into the perovskite is feasible for excitation at 400 nm resulting in light-harvesting of high-energy photons by the HTM. Accurate absolute NIR absorption coefficients for CB electrons in mesoporous TiO are provided.

摘要

在采用介孔TiO的结构上,有机-无机杂化铅卤化物钙钛矿已经实现了超过22%的非常高的功率转换效率,但不同界面间的载流子注入过程仍未被完全理解。在此,我们使用超快宽带瞬态吸收光谱来确定空穴和电子注入的时间常数及产率。我们表明,在钙钛矿/空穴传输材料(HTM)界面处,空穴从钙钛矿价带(VB)转移到HTM H101的过程发生在不到500飞秒的时间内,但受到接触层缺陷以及HTM向介孔结构中渗透不良的限制。从钙钛矿导带(CB)向介孔TiO的CB注入电子只是一个小通道(25%)。因此,介孔MAPI/TiO结构内部的电子传输主要通过钙钛矿进行。我们还表明,对于400nm处的激发,从H101向钙钛矿注入电子是可行的,这使得HTM能够捕获高能光子。文中还给出了介孔TiO中CB电子准确的绝对近红外吸收系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验