Milster Sebastian, Grünbaum Tobias, Bange Sebastian, Kurrmann Simon, Kraus Hermann, Stoltzfus Dani M, Leung Anna E, Darwish Tamim A, Burn Paul L, Boehme Christoph, Lupton John M
Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9388-9392. doi: 10.1002/anie.202002477. Epub 2020 Apr 6.
The formation of excitons in OLEDs is spin dependent and can be controlled by electron-paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1 mT). A pronounced feature emerges at zero field in addition to the conventional spin- Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π-conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero-field feature and local hyperfine fields. The zero-field peak results from a quasistatic magnetic-field effect of the RF radiation for periods comparable to the carrier-pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero-field peak, we suggest that this result may constitute a fundamental low-field limit of magnetic resonance in carrier-pair-based systems. OLEDs offer an alternative solid-state platform to investigate the radical-pair mechanism of magnetic-field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.
有机发光二极管中激子的形成取决于自旋,可通过电子顺磁共振进行控制,这会影响器件电阻和电致发光产率。我们在极低磁场(<1 mT)条件下探索电检测磁共振。除了传统的自旋 - 塞曼共振(其拉莫尔频率与入射辐射频率匹配)外,在零场处还出现了一个明显的特征。通过将传统的π共轭聚合物作为活性材料与全氘代类似物进行比较,我们展示了零场特征与局部超精细场之间的相互作用。零场峰是由射频辐射在与载流子对寿命相当的时间段内的准静态磁场效应导致的。塞曼共振在低至3.2 MHz时仍可分辨,约为地球磁场中电子拉莫尔频率的两倍。然而,由于降低超精细场会以增加零场峰为代价使塞曼峰变尖锐,我们认为这一结果可能构成基于载流子对的系统中磁共振的一个基本低场极限。有机发光二极管提供了一个替代的固态平台,用于研究光化学反应中磁场效应的自由基对机制,通过脉冲实验直接在时域中测量自旋退相干,从而可以测试生物磁受体模型。