Milner A A, Korobenko A, Milner V
Department of Physics & Astronomy, The University of British Columbia, V6T 1Z1 Vancouver, Canada.
Phys Rev Lett. 2017 Jun 16;118(24):243201. doi: 10.1103/PhysRevLett.118.243201.
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
在室温及大气压下,通过实验在亚纳秒时间尺度上实现了强激光诱导的氧气磁化。该方法基于利用光学离心机操纵顺磁分子的旋转来控制其电子自旋。自旋 - 旋转耦合导致每个离心分子的自旋极化程度高达一个玻尔磁子量级。由于与激光脉冲的非共振相互作用,所展示的技术适用于广泛的顺磁转子类别。在高密度气体中实施,它可能提供一种远程产生宏观磁场(如本工作所示)以及产生大量自旋极化电子的有效方法。