Chen Wen L K, Edington Collin, Suter Emily, Yu Jiajie, Velazquez Jeremy J, Velazquez Jason G, Shockley Michael, Large Emma M, Venkataramanan Raman, Hughes David J, Stokes Cynthia L, Trumper David L, Carrier Rebecca L, Cirit Murat, Griffith Linda G, Lauffenburger Douglas A
Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139.
CN Bio Innovations, Welwyn Garden City, Hertfordshire, UK.
Biotechnol Bioeng. 2017 Nov;114(11):2648-2659. doi: 10.1002/bit.26370. Epub 2017 Jul 27.
A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut-liver tissue interactions under normal and inflammatory contexts, via an integrative multi-organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long-term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut-liver crosstalk. Moreover, significant non-linear modulation of cytokine responses was observed under inflammatory gut-liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA-seq analysis revealed significant upregulation of IFNα/β/γ signaling during inflammatory gut-liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut-liver interaction also negatively affected tissue-specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi-tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648-2659. © 2017 Wiley Periodicals, Inc.
在药物发现和开发过程中,分析组织间复杂细胞通讯的能力至关重要,而人类应用需要用于此目的的体外技术。一个突出的例子是肠道与肝脏之间的通讯,其中一个组织的扰动会影响另一个组织的行为。在这里,我们通过一个整合的多器官平台,包括人肝脏(肝细胞和库普弗细胞)和肠道(肠上皮细胞、杯状细胞和树突状细胞)模型,展示了在正常和炎症环境下人类肠道 - 肝脏组织相互作用的研究。我们的结果表明,在基线相互作用中,肠道(如屏障完整性)和肝脏(如白蛋白)功能可长期(>2周)维持。比较与肠道相互作用的肝脏和分离状态下肝脏的基因表达数据,揭示了胆汁酸代谢的调节。肠道FGF19分泌以及对肝脏CYP7A1表达的相关抑制提供了生理相关的肠道 - 肝脏串扰的证据。此外,在炎症性肠道 - 肝脏相互作用下观察到细胞因子反应的显著非线性调节;例如,CXCR3配体(CXCL9、10、11)的产生协同增强。RNA测序分析显示,在炎症性肠道 - 肝脏串扰期间,IFNα/β/γ信号通路显著上调,这些通路与协同的CXCR3趋化因子产生有关。肠道 - 肝脏相互作用中加剧的炎症反应也对组织特异性功能(如肝脏代谢)产生负面影响。这些发现说明了一个整合的多组织平台如何能够产生有助于理解复杂病理生理过程(如炎症性器官串扰)的见解。《生物技术与生物工程》2017年;114:2648 - 2659。©2017威利期刊公司