Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA.
J Chem Phys. 2017 Jun 28;146(24):244701. doi: 10.1063/1.4986949.
We show how a jellium model can represent a catalyst particle within the density-functional theory based approaches to the growth mechanism of carbon nanotubes (CNTs). The advantage of jellium is an abridged, less computationally taxing description of the multi-atom metal particle, while at the same time in avoiding the uncertainty of selecting a particular atomic geometry of either a solid or ever-changing liquid catalyst particle. A careful choice of jellium sphere size and its electron density as a descriptive parameter allows one to calculate the CNT-metal interface energies close to explicit full atomistic models. Further, we show that using jellium permits computing and comparing the formation of topological defects (sole pentagons or heptagons, the culprits of growth termination) as well as pentagon-heptagon pairs 5|7 (known as chirality-switching dislocation).
我们展示了如何在基于密度泛函理论的碳纳米管(CNT)生长机制方法中,使用类固体模型来表示催化剂颗粒。类固体的优势在于可以简化多原子金属颗粒的描述,减少计算负担,同时避免选择特定原子几何形状的不确定性,无论是固体还是不断变化的液体催化剂颗粒。仔细选择类固体球体的大小及其电子密度作为描述参数,可以使我们计算出与明确的全原子模型非常接近的 CNT-金属界面能。此外,我们还表明,使用类固体可以计算和比较拓扑缺陷(单五边形或七边形,生长终止的罪魁祸首)以及五边形-七边形对 5|7(称为手性转变位错)的形成。