School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia.
State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P.R. China.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10373-10377. doi: 10.1002/anie.201703827. Epub 2017 Jul 19.
Transitional metals are widely used as co-catalysts boosting photocatalytic H production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn Cd S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.
过渡金属被广泛用作助催化剂以促进光催化产氢。然而,基于金属的助催化剂存在成本高、丰度有限和对环境有害等问题。迄今为止,很少有报道无金属助催化剂。在这里,我们首次利用密度泛函计算指导将黑磷作为 CdS、ZnCdS 或 ZnS 的高效无金属助催化剂的应用。特别地,磷烯修饰的 CdS 在 420nm 时表现出高达 34.7%的高光致量子产率。这种优异的活性源于磷烯与 CdS 之间的强电子耦合,以及磷烯的有利能带结构、高电荷迁移率和大量活性位点,这一点得到了计算和先进表征的支持,例如基于同步加速器的 X 射线吸收近边光谱。这项工作为制备高活性、廉价和绿色的光催化剂带来了新的机遇。