Suppr超能文献

TiC MXene 共催化剂在金属硫化物光吸收剂上用于增强可见光光催化制氢。

TiC MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production.

机构信息

School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.

School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia.

出版信息

Nat Commun. 2017 Jan 3;8:13907. doi: 10.1038/ncomms13907.

Abstract

Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, TiC nanoparticles, as a highly efficient co-catalyst. TiC nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 μmol hg and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of TiC nanoparticles. Furthermore, TiC nanoparticles also serve as an efficient co-catalyst on ZnS or ZnCdS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.

摘要

通过光催化水分解实现可扩展和可持续的太阳能制氢需要高效和稳定的丰富地球元素共催化剂来替代昂贵和稀有的铂。在这里,我们利用密度泛函理论计算来指导原子级的探索、设计和制造一种 MXene 材料——TiC 纳米粒子,作为一种高效的共催化剂。TiC 纳米粒子通过水热策略与硫化镉合理结合,在可见光下光催化制氢的活性高达 14342 μmol hg-1,在 420nm 处的表观量子效率为 40.1%。这种高性能源于 TiC 纳米粒子的有利费米能级位置、导电性和析氢能力。此外,TiC 纳米粒子在 ZnS 或 ZnCdS 上也可以作为高效共催化剂。这项工作展示了丰富的 MXene 族材料在构建众多高性能和低成本光催化剂/光电电极方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验