Suppr超能文献

嵌入有序介孔碳中的金属钴纳米粒子:具有优异加氢性能的非贵金属催化剂。

Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance.

机构信息

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.

出版信息

J Colloid Interface Sci. 2017 Nov 1;505:789-795. doi: 10.1016/j.jcis.2017.06.081. Epub 2017 Jun 24.

Abstract

Ordered mesoporous carbon (OMC)-metal composites have attracted great attention owing to their combination of high surface area, controlled pore size distribution and physicochemical properties of metals. Herein, we report the cobalt nanoparticles/ordered mesoporous carbon (CoNPs@OMC) composite prepared by a one-step carbonization/reduction process assisted by a hydrothermal pre-reaction. The CoNPs@OMC composite presents a high specific surface area of 544mg, and the CoNPs are uniformly imbedded or confined in the ordered mesoporous carbon matrix. When used as a non-precious metal-containing catalyst for hydrogenation reduction of p-nitrophenol and nitrobenzene, it demonstrates high efficiency and good cycling stability. Furthermore, the CoNPs@OMC composite can be directly used to catalyze the Fischer-Tropsch synthesis for the high-pressure CO hydrogenation, and presents a good catalytic selectivity for C hydrocarbons. The excellent catalytic performance of the CoNPs@OMC composite can be ascribed to synergistic effect between the high specific surface area, mesoporous structure and well-imbedded CoNPs in the carbon matrix.

摘要

有序介孔碳(OMC)-金属复合材料因其高比表面积、可控的孔径分布和金属的物理化学性质而受到广泛关注。本文报道了一种通过水热预反应辅助的一步碳化/还原法制备的钴纳米粒子/有序介孔碳(CoNPs@OMC)复合材料。CoNPs@OMC 复合材料具有 544mg 的高比表面积,CoNPs 均匀地嵌入或限制在有序介孔碳基体中。当用作加氢还原对硝基苯酚和硝基苯的非贵金属含催化剂时,表现出高效和良好的循环稳定性。此外,CoNPs@OMC 复合材料可直接用于高压 CO 加氢的费托合成,对 C 烃具有良好的催化选择性。CoNPs@OMC 复合材料的优异催化性能可归因于高比表面积、介孔结构以及 CoNPs 在碳基质中良好的嵌入协同作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验