Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
ACS Nano. 2024 Sep 10;18(36):24872-24897. doi: 10.1021/acsnano.4c05249. Epub 2024 Aug 28.
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
钴纳米粒子(CoNPs)在多个领域都存在潜在暴露风险,包括硬质合金工业生产、新能源锂离子电池的日益普及,以及数以百万计的金属对金属关节假体患者。来自人体、动物和体外实验的证据表明,CoNPs 与神经毒性之间存在密切关系。然而,目前缺乏对 CoNPs 暴露导致中枢神经系统(CNS)损伤及其潜在分子机制的系统评估。在本研究中,我们发现 CoNPs 在体内和体外均可诱导神经退行性损伤,包括认知障碍、β-淀粉样蛋白沉积和 Tau 过度磷酸化。CoNPs 促进了自噬体的形成,并阻碍了体内和体外自噬体-溶酶体融合,导致毒性蛋白积累。此外,CoNPs 暴露降低了转录因子 EB(TFEB)的水平和溶酶体的丰度,导致自噬体-溶酶体融合受阻。有趣的是,长链非编码 RNA NR_030777 的过表达减轻了 CoNPs 在体内和体外模型中诱导的神经退行性损伤。荧光原位杂交实验显示,NR_030777 可直接结合并稳定 TFEB mRNA,减轻自噬体-溶酶体融合的阻滞,并最终恢复 CoNPs 在体内和体外诱导的神经退行性病变。总之,本研究表明,自噬功能障碍是 CoNPs 暴露诱导神经退行性病变的主要毒性机制,NR_030777 在 CoNPs 诱导的自噬功能障碍中发挥关键作用。此外,所提出的不良结局途径有助于更好地理解 CoNPs 对 CNS 毒性的评估。
J Cell Biol. 2018-12-11
Waste Manag Res. 2024-12
Signal Transduct Target Ther. 2023-10-23
Alzheimers Dement. 2023-10
EMBO J. 2023-5-2
Aging Brain. 2022-11-24