Suppr超能文献

基于 RNA 二聚体能量景观预测 RNA 三维结构:在 RNA 四螺旋体中的应用。

Prediction of 3D RNA Structures from Sequence Using Energy Landscapes of RNA Dimers: Application to RNA Tetraloops.

机构信息

Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.

出版信息

J Chem Theory Comput. 2024 May 28;20(10):4363-4376. doi: 10.1021/acs.jctc.4c00189. Epub 2024 May 10.

Abstract

Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA's 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.

摘要

访问 RNA 的三维结构使我们能够更深入地了解其生物学机制,并且能够设计针对 RNA 的药物,从而利用折叠 RNA 结构所施加的独特化学环境。由于 RNA 的动态和结构复杂特性,实验和传统的计算方法都难以确定 RNA 的 3D 结构。在这里,我们介绍了 TAPERSS(基于理论分析、预测和序列评估的 RNA 结构),这是一种基于物理的片段组装方法,可从序列预测 3D RNA 结构。TAPERSS 使用通过 RNA 二核苷酸单磷酸的离散路径采样计算创建的片段库,可以用相对较低的计算复杂度对任何 RNA 序列进行基于物理的能量景观采样。我们使用组合算法作为概念验证,在 21 个 RNA 四螺旋体上对 TAPERSS 进行了基准测试。我们表明,TAPERSS 成功地预测了所有 21 个 RNA 发夹的无辅基状态结构,其中 16 个结构的预测能量也较低。我们证明 TAPERSS 在具有大多堆叠环核苷酸的 GNRA 样四螺旋体上表现最为准确,而在更具动态性的 UNCG 和 CUYG 四螺旋体上则成功有限,这很可能是由于用于创建片段库的 RNA 力场的影响。此外,我们表明 TAPERSS 可以成功预测大多数实验中的非无辅基状态,这突出了其在预测具有生物学意义但尚未观察到的状态方面的潜力。这为药物设计和相关研究中的未来应用带来了巨大的希望。通过讨论改进和实施更有效的采样算法,我们相信 TAPERSS 可能成为用于大规模 RNA 结构基于物理的构象采样的有用工具。

相似文献

本文引用的文献

2
Targeting RNA structures with small molecules.小分子靶向 RNA 结构。
Nat Rev Drug Discov. 2022 Oct;21(10):736-762. doi: 10.1038/s41573-022-00521-4. Epub 2022 Aug 8.
7
Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model.基于粗粒化 IsRNA2 模型对非规范 RNA 碱基对的建模。
J Phys Chem B. 2021 Nov 4;125(43):11907-11915. doi: 10.1021/acs.jpcb.1c07288. Epub 2021 Oct 25.
8
Transcription Regulation Through Nascent RNA Folding.通过新生 RNA 折叠进行转录调控。
J Mol Biol. 2021 Jul 9;433(14):166975. doi: 10.1016/j.jmb.2021.166975. Epub 2021 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验