Quiroga Gabriela, Erice Gorka, Aroca Ricardo, Chaumont François, Ruiz-Lozano Juan M
Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain.
Institut des Sciences de la Vie, Université catholique de LouvainLouvain-la-Neuve, Belgium.
Front Plant Sci. 2017 Jun 19;8:1056. doi: 10.3389/fpls.2017.01056. eCollection 2017.
The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (, and ) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress.
丛枝菌根(AM)共生已被证明可通过调节多种宿主植物水通道蛋白来提高玉米对不同干旱胁迫情况的耐受性。本研究的目的是通过比较AM共生对两个干旱敏感性不同的玉米品种根系水通道蛋白基因表达和植物生理学的影响,来突出水通道蛋白调节的差异。这些信息将有助于识别参与AM共生增强耐旱性的关键水通道蛋白基因。结果表明,当植物遭受干旱胁迫时,AM共生对干旱敏感型植物生理参数的改善比对耐旱型植物更高。这些参数包括光系统II效率、膜稳定性、可溶性糖积累和植物生物量生产。因此,干旱敏感型植物从AM共生中获得了更高的生理益处。此外,在干旱敏感型品种中,AM共生使这些基因下调,只有 被上调。相比之下,在耐旱型品种中,所研究的水通道蛋白基因中只有三个( 、 和 )受AM共生调节,结果是被诱导。干旱敏感型品种的结果符合以下假设:水分亏缺下水通道蛋白的下调可能是减少水分流失的一种方式,而AM共生可能在这种调节中帮助植物。事实上,在干旱胁迫期间,水分保持对植物的存活和生产力至关重要,这是通过高效吸收和严格调节水分流失来实现的,水通道蛋白参与其中。此外,与耐旱型品种相比,AM共生在干旱敏感型品种中对这些水通道蛋白的调节更广泛且形成对比,这表明这些水通道蛋白在干旱胁迫条件下两个品种的水分稳态或其他具有生理重要性的溶质运输中发挥作用,这可能对AM诱导的耐旱性很重要。