Suppr超能文献

用于预测质子泵抑制剂治疗不依从性的评分系统在移动应用程序中的构建、内部验证及实施

Construction, internal validation and implementation in a mobile application of a scoring system to predict nonadherence to proton pump inhibitors.

作者信息

Mares-García Emma, Palazón-Bru Antonio, Folgado-de la Rosa David Manuel, Pereira-Expósito Avelino, Martínez-Martín Álvaro, Cortés-Castell Ernesto, Gil-Guillén Vicente Francisco

机构信息

Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain.

Research Unit, General University Hospital of Elda, Elda, Alicante, Spain.

出版信息

PeerJ. 2017 Jun 30;5:e3455. doi: 10.7717/peerj.3455. eCollection 2017.

Abstract

BACKGROUND

Other studies have assessed nonadherence to proton pump inhibitors (PPIs), but none has developed a screening test for its detection.

OBJECTIVES

To construct and internally validate a predictive model for nonadherence to PPIs.

METHODS

This prospective observational study with a one-month follow-up was carried out in 2013 in Spain, and included 302 patients with a prescription for PPIs. The primary variable was nonadherence to PPIs (pill count). Secondary variables were gender, age, antidepressants, type of PPI, non-guideline-recommended prescription (NGRP) of PPIs, and total number of drugs. With the secondary variables, a binary logistic regression model to predict nonadherence was constructed and adapted to a points system. The ROC curve, with its area (AUC), was calculated and the optimal cut-off point was established. The points system was internally validated through 1,000 bootstrap samples and implemented in a mobile application (Android).

RESULTS

The points system had three prognostic variables: total number of drugs, NGRP of PPIs, and antidepressants. The AUC was 0.87 (95% CI [0.83-0.91],  < 0.001). The test yielded a sensitivity of 0.80 (95% CI [0.70-0.87]) and a specificity of 0.82 (95% CI [0.76-0.87]). The three parameters were very similar in the bootstrap validation.

CONCLUSIONS

A points system to predict nonadherence to PPIs has been constructed, internally validated and implemented in a mobile application. Provided similar results are obtained in external validation studies, we will have a screening tool to detect nonadherence to PPIs.

摘要

背景

其他研究已对质子泵抑制剂(PPI)的不依从性进行了评估,但尚未开发出用于检测的筛查测试。

目的

构建并内部验证PPI不依从性的预测模型。

方法

2013年在西班牙开展了这项为期1个月随访的前瞻性观察性研究,纳入了302例开具PPI处方的患者。主要变量为PPI不依从性(药丸计数)。次要变量包括性别、年龄、抗抑郁药、PPI类型、PPI的非指南推荐处方(NGRP)以及药物总数。利用次要变量构建了一个预测不依从性的二元逻辑回归模型,并将其适配为一个积分系统。计算了ROC曲线及其面积(AUC),并确定了最佳切点。通过1000次自抽样对积分系统进行内部验证,并在移动应用程序(安卓系统)中实施。

结果

积分系统有三个预后变量:药物总数、PPI的NGRP以及抗抑郁药。AUC为0.87(95%CI[0.83 - 0.91],P<0.001)。该测试的灵敏度为0.80(95%CI[0.70 - 0.87]),特异度为0.82(95%CI[0.76 - 0.87])。在自抽样验证中,这三个参数非常相似。

结论

已构建了一个预测PPI不依从性的积分系统,进行了内部验证,并在移动应用程序中实施。如果在外部验证研究中获得类似结果,我们将拥有一种检测PPI不依从性的筛查工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验