Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain.
Departamento de Medicina, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain.
J Biomed Mater Res B Appl Biomater. 2018 May;106(4):1477-1485. doi: 10.1002/jbm.b.33954. Epub 2017 Jul 4.
The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1477-1485, 2018.
种植牙的成功取决于其骨整合,这是种植体生物相容性的一个重要特征。在这项研究中,两种不同的溶胶-凝胶杂化涂层配方[50%甲基三甲氧基硅烷:50%3-缩水甘油丙基三甲氧基硅烷(50M50G)和 70%甲基三甲氧基硅烷与 30%四乙氧基硅烷(70M30T)]被应用于钛种植体上。为了评估它们的骨整合,进行了体外和体内检测。体外细胞增殖和分化试验表明,两种涂层之间没有任何差异。然而,体内植入后 4 周和 8 周,50M50G 种植体周围纤维囊腔面积分别比 70M30T 处理种植体周围结缔组织面积大 10 倍和 4 倍。因此,体外结果并没有对 50M50G 种植体的体内失败提供任何预测或解释。我们假设,首先粘附在表面的蛋白质层可能对种植体的骨整合有直接影响,并且可能与体内结果相关。用人血清进行生物材料吸附分析,用质谱法(LC-MS/MS)分析粘附在种植体表面的第一层血清蛋白。在鉴定的 171 种蛋白质中;有 30 种蛋白质在 50M50G 种植体表面明显富集。这一组包括许多免疫补体系统的蛋白质,包括补体 C1 的几个亚成分、补体因子 H、C4b 结合蛋白α链、补体 C5 和 C-反应蛋白。这一结果表明,这些在 50M50G 表面富集的蛋白质可能触发了形成观察到的纤维囊腔的级联反应。这些结果的意义可能为预测体内生物相容性问题开辟新的可能性。© 2017 Wiley Periodicals, Inc. J 生物医学材料研究部分 B: 应用生物材料,106B: 1477-1485,2018。