École Normale Supérieure - PSL Research University , Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France.
J Phys Chem B. 2017 Jul 27;121(29):7027-7041. doi: 10.1021/acs.jpcb.7b03102. Epub 2017 Jul 17.
Enzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
酶广泛应用于非水溶剂中,以催化非天然反应。虽然实验测量表明溶剂性质对反应动力学有很强的影响,但非水溶剂中催化机制的分子细节仍然很大程度上难以捉摸。在这里,我们研究了在有机非极性溶剂中由模式枯草杆菌蛋白酶催化的转酯化反应。限速酰化步骤涉及活性位点残基之间的质子转移和底物的亲核攻击,形成四面体中间体。我们设计了第一个耦合价键态模型,同时描述了酶活性位点中两种反应。我们开发了一种新的系统程序,可根据包含活性位点的分子细节以及底物和蛋白质构象波动的高精度 ab initio QM/MM 自由能计算对该模型进行参数化。我们的计算表明,反应能垒随溶剂和蛋白质构象波动而剧烈变化。我们发现,酰化步骤中四面体中间体形成的机制与在水相条件下确定的机制相似,并且质子转移和亲核攻击反应协同发生。我们确定反应坐标主要是由于靠近活性位点的一些残留水分子的重排。