State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, 100084, China.
Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing, 100871, China.
ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23741-23747. doi: 10.1021/acsami.7b05194. Epub 2017 Jul 5.
Rational design and surface engineering are the key to synthesizing high-performance electrode materials for electrocatalysis and energy conversion and storage applications. Herein, a novel three-dimensional (3D) nanoarchitecture of TiO nanowires decorated with MoO quantum dots encapsulated in carbon nanosheets was successfully synthesized by a simple polymerization method. Such a hierarchical nanostructure can not only exhibit the synergistic effect of structural stability of a 1D TiO substrate and high capacity of 0D MoO quantum dots but also prevent the aggregation and oxidation of MoO. As a result, the novel 0D-1D-2D composite illustrates an initial discharge capacity of 470 mAh g at a high current density of 500 mA g, especially a capacity retention of about 83% after 450 cycles. The present work highlights the designing strategy of nanoarchitectures containing high capacity materials for enhancing electrochemical performance of Ti-based materials.
理性设计和表面工程是合成用于电催化和能量转换及存储应用的高性能电极材料的关键。在此,通过一种简单的聚合方法成功合成了一种新型的 TiO 纳米线负载 MoO 量子点的三维(3D)纳米结构,该结构被碳纳米片包裹。这种分级纳米结构不仅可以表现出一维(1D)TiO 基底的结构稳定性和 0D MoO 量子点的高容量的协同效应,还可以防止 MoO 的聚集和氧化。结果,新型的 0D-1D-2D 复合材料在 500 mA g 的高电流密度下具有 470 mAh g 的初始放电容量,尤其是在 450 次循环后容量保持率约为 83%。本工作强调了包含高容量材料的纳米结构的设计策略,用于提高基于 Ti 的材料的电化学性能。