Suppr超能文献

基于考虑对象和视觉注意的自适应图像选择的Few-Shot 个性化显著度预测。

Few-Shot Personalized Saliency Prediction Based on Adaptive Image Selection Considering Object and Visual Attention.

机构信息

Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan.

Office of Institutional Research, Hokkaido University, N-8, W-5, Kita-ku, Sapporo, Hokkaido 060-0808, Japan.

出版信息

Sensors (Basel). 2020 Apr 11;20(8):2170. doi: 10.3390/s20082170.

Abstract

A few-shot personalized saliency prediction based on adaptive image selection considering object and visual attention is presented in this paper. Since general methods predicting personalized saliency maps (PSMs) need a large number of training images, the establishment of a theory using a small number of training images is needed. To tackle this problem, although finding persons who have visual attention similar to that of a target person is effective, all persons have to commonly gaze at many images. Thus, it becomes difficult and unrealistic when considering their burden. On the other hand, this paper introduces a novel adaptive image selection (AIS) scheme that focuses on the relationship between human visual attention and objects in images. AIS focuses on both a diversity of objects in images and a variance of PSMs for the objects. Specifically, AIS selects images so that selected images have various kinds of objects to maintain their diversity. Moreover, AIS guarantees the high variance of PSMs for persons since it represents the regions that many persons commonly gaze at or do not gaze at. The proposed method enables selecting similar users from a small number of images by selecting images that have high diversities and variances. This is the technical contribution of this paper. Experimental results show the effectiveness of our personalized saliency prediction including the new image selection scheme.

摘要

本文提出了一种基于考虑对象和视觉注意的自适应图像选择的少量镜头个性化显著度预测方法。由于预测个性化显著度图 (PSM) 的一般方法需要大量的训练图像,因此需要建立一种使用少量训练图像的理论。为了解决这个问题,虽然找到与目标人具有相似视觉注意的人是有效的,但所有人都必须共同注视许多图像。因此,考虑到他们的负担,这变得困难和不现实。另一方面,本文引入了一种新颖的自适应图像选择 (AIS) 方案,该方案侧重于图像中人类视觉注意与对象之间的关系。AIS 既关注图像中对象的多样性,也关注对象的 PSM 方差。具体来说,AIS 选择图像,以便选择具有各种对象的图像来保持其多样性。此外,AIS 保证了人员的 PSM 具有较高的方差,因为它代表了许多人通常注视或不注视的区域。通过选择具有较高多样性和方差的图像,该方法能够从少量图像中选择相似的用户。这是本文的技术贡献。实验结果表明了包括新图像选择方案在内的个性化显著度预测的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61b/7218730/184232275962/sensors-20-02170-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验