Viswanathan Vasanthi S, Ryan Matthew J, Dhruv Harshil D, Gill Shubhroz, Eichhoff Ossia M, Seashore-Ludlow Brinton, Kaffenberger Samuel D, Eaton John K, Shimada Kenichi, Aguirre Andrew J, Viswanathan Srinivas R, Chattopadhyay Shrikanta, Tamayo Pablo, Yang Wan Seok, Rees Matthew G, Chen Sixun, Boskovic Zarko V, Javaid Sarah, Huang Cherrie, Wu Xiaoyun, Tseng Yuen-Yi, Roider Elisabeth M, Gao Dong, Cleary James M, Wolpin Brian M, Mesirov Jill P, Haber Daniel A, Engelman Jeffrey A, Boehm Jesse S, Kotz Joanne D, Hon Cindy S, Chen Yu, Hahn William C, Levesque Mitchell P, Doench John G, Berens Michael E, Shamji Alykhan F, Clemons Paul A, Stockwell Brent R, Schreiber Stuart L
Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA.
Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th Street, Phoenix, Arizona 85004, USA.
Nature. 2017 Jul 27;547(7664):453-457. doi: 10.1038/nature23007. Epub 2017 Jul 5.
Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.
细胞状态的可塑性被认为会导致对多种癌症治疗方法产生抗性,从而限制其有效性。在人类肿瘤和癌细胞系中观察到的高间充质细胞状态与多种癌症谱系对多种治疗方式的抗性有关,但这种状态的机制基础仍未完全了解。在这里,我们对人类癌细胞系和类器官中这种抗治疗的高间充质细胞状态进行了分子表征,并表明它依赖于一种可药物靶向的脂质过氧化物酶途径,该途径可防止铁死亡,铁死亡是一种由有毒脂质过氧化物积累诱导的非凋亡性细胞死亡形式。我们表明,这种细胞状态的特征是促进多不饱和脂质合成的酶的活性。这些脂质是脂氧合酶进行脂质过氧化的底物。这种脂质代谢产生了对汇聚于磷脂谷胱甘肽过氧化物酶(GPX4)的途径的依赖性,GPX4是一种含硒半胱氨酸的酶,可消除脂质过氧化物,从而防止过氧化物的铁介导反应,而过氧化物会诱导铁死亡细胞死亡。研究发现,在以ZEB1高表达为特征的多种抗治疗状态中都存在对GPX4的依赖性,包括上皮来源癌中的上皮-间充质转化、黑色素瘤中TGFβ介导的抗治疗性、前列腺癌中治疗诱导的神经内分泌转分化以及肉瘤,肉瘤因其起源细胞而固定在间充质状态。我们确定,抑制脂质过氧化物酶途径诱导的铁死亡细胞死亡的易感性是多种间充质细胞状态背景下抗治疗癌细胞的一个特征。