Kim Eunhee, Sakata Kazuko, Liao Francesca-Fang
Departments of Pharmacology and Department of Anatomy and Neurobiology, TSRB 218A, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
PLoS Genet. 2017 Jul 5;13(7):e1006849. doi: 10.1371/journal.pgen.1006849. eCollection 2017 Jul.
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.
内质网中的未折叠蛋白反应(UPR)和细胞质热应激反应是维持细胞健康蛋白质稳态所必需的两个主要应激反应系统。这两个系统中的任何一个出现故障,例如持续的UPR激活或热休克反应激活不足,都可能导致神经退行性变的发生。通过热休克因子1(HSF1)激活来减轻内质网应激和增强热休克反应,此前一直被认为是治疗阿尔茨海默病(AD)——一种常见且具有破坏性的tau蛋白病——的有吸引力的潜在治疗靶点。了解上述两个系统之间的相互作用及其在AD中的协同作用仍然难以捉摸。在这里,我们报告了在人类大脑和tau致病小鼠模型(rTg4510、PS19和rTg21221)中的研究,确定HSF1降解和UPR激活是异常tau蛋白病发病机制的先兆。我们证明化学内质网应激诱导剂导致自噬-溶酶体HSF1降解,从而导致大鼠原代神经元中的tau蛋白过度磷酸化。此外,永久性HSF1缺失反过来会导致慢性UPR激活,导致老年HSF1杂合敲除小鼠海马体中异常的tau蛋白磷酸化和聚集。在稳定过表达促聚集突变体TauRD ΔK280(N2a-TauRD ΔK280)的N2a细胞中,UPR激活和HSF1缺失之间的有害相互作用会加剧。我们通过表明UPR凋亡途径中编码C/EBP同源蛋白(CHOP)的基因激活促进HSF1降解,从而提供了这两个应激反应系统如何内在交织的证据,这可能通过内质网伴侣HSP70 a5(BiP/GRP78)抑制进一步导致UPR延长。上调HSF1可通过减少CHOP和增加HSP70 a5(BiP/GRP78)来减轻N2a-TauRD ΔK280中的tau毒性。我们的工作揭示了这两个应激反应系统之间的双向串扰如何促进早期tau蛋白病变,并确定HSF1是这两个系统中可能的关键参与者之一。