Suppr超能文献

小鼠抓挠行为的自动声学检测

Automated acoustic detection of mouse scratching.

作者信息

Elliott Peter, G'Sell Max, Snyder Lindsey M, Ross Sarah E, Ventura Valérie

机构信息

Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, United States of America.

Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America.

出版信息

PLoS One. 2017 Jul 5;12(7):e0179662. doi: 10.1371/journal.pone.0179662. eCollection 2017.

Abstract

Itch is an aversive somatic sense that elicits the desire to scratch. In animal models of itch, scratching behavior is frequently used as a proxy for itch, and this behavior is typically assessed through visual quantification. However, manual scoring of videos has numerous limitations, underscoring the need for an automated approach. Here, we propose a novel automated method for acoustic detection of mouse scratching. Using this approach, we show that chloroquine-induced scratching behavior in C57BL/6 mice can be quantified with reasonable accuracy (85% sensitivity, 75% positive predictive value). This report is the first method to apply supervised learning techniques to automate acoustic scratch detection.

摘要

瘙痒是一种引起搔抓欲望的厌恶性躯体感觉。在瘙痒的动物模型中,搔抓行为常被用作瘙痒的替代指标,并且这种行为通常通过视觉量化来评估。然而,视频的人工评分存在许多局限性,这突出了对自动化方法的需求。在此,我们提出了一种用于小鼠搔抓声学检测的新型自动化方法。使用这种方法,我们表明可以以合理的准确度(85%的灵敏度,75%的阳性预测值)对C57BL/6小鼠中氯喹诱导的搔抓行为进行量化。本报告是第一种应用监督学习技术来自动化声学搔抓检测的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/787f/5497976/a16a7b414fb4/pone.0179662.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验