Suppr超能文献

随机临床试验中的经验似然推断。

Empirical likelihood inference in randomized clinical trials.

机构信息

Department of Mathematics and Statistics, The University of Toledo, Toledo, USA.

出版信息

Stat Methods Med Res. 2018 Dec;27(12):3770-3784. doi: 10.1177/0962280217711205. Epub 2017 Jul 5.

Abstract

In individually randomized controlled trials, in addition to the primary outcome, information is often available on a number of covariates prior to randomization. This information is frequently utilized to undertake adjustment for baseline characteristics in order to increase precision of the estimation of average treatment effects; such adjustment is usually performed via covariate adjustment in outcome regression models. Although the use of covariate adjustment is widely seen as desirable for making treatment effect estimates more precise and the corresponding hypothesis tests more powerful, there are considerable concerns that objective inference in randomized clinical trials can potentially be compromised. In this paper, we study an empirical likelihood approach to covariate adjustment and propose two unbiased estimating functions that automatically decouple evaluation of average treatment effects from regression modeling of covariate-outcome relationships. The resulting empirical likelihood estimator of the average treatment effect is as efficient as the existing efficient adjusted estimators when separate treatment-specific working regression models are correctly specified, yet are at least as efficient as the existing efficient adjusted estimators for any given treatment-specific working regression models whether or not they coincide with the true treatment-specific covariate-outcome relationships. We present a simulation study to compare the finite sample performance of various methods along with some results on analysis of a data set from an HIV clinical trial. The simulation results indicate that the proposed empirical likelihood approach is more efficient and powerful than its competitors when the working covariate-outcome relationships by treatment status are misspecified.

摘要

在个体随机对照试验中,除了主要结局外,通常在随机化之前就有许多协变量的信息。这些信息经常被用于进行基线特征的调整,以提高平均治疗效果估计的精度;这种调整通常通过结局回归模型中的协变量调整来实现。尽管协变量调整的使用被广泛认为是使治疗效果估计更精确和相应的假设检验更有力的,但人们相当担心随机临床试验中的客观推断可能会受到影响。在本文中,我们研究了一种经验似然方法来进行协变量调整,并提出了两个无偏估计函数,它们自动将平均治疗效果的评估与协变量-结局关系的回归建模分离。当分别指定特定于处理的工作回归模型正确时,所得的平均治疗效果的经验似然估计与现有的有效调整估计一样有效,但对于任何给定的特定于处理的工作回归模型,无论它们是否与真实的特定于处理的协变量-结局关系一致,至少与现有的有效调整估计一样有效。我们进行了一项模拟研究,比较了各种方法的有限样本性能,并对来自 HIV 临床试验的数据集的分析结果进行了一些探讨。模拟结果表明,当处理状态的工作协变量-结局关系被错误指定时,所提出的经验似然方法比其竞争者更有效和有力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验